BREACH

ModSecurity® Reference Manual

Version 2.5.11 (Nov 4, 2009)
Copyright © 2004-2009 Breach Security, Inc. (http://www.breach.com)

Table of Contents

F gL [N o1 o o PP PRPRR 8
o I e = o oo T o SRS 8
Real-Time Monitoring and AttaCk DELECIION .........c.evvieiiiiiiiieiiieee e 8
Attack Prevention and Just-in-time PatChing ...........c.coveiiiiiiiiiiiiiec e 8
FIEXIDIE RUIE ENQING ...oeeiiieie ettt e e e e e e e e e s e e e e e e e e e e e ananes 9
Embedded-mode DEPIOYMENT ........oeiiiieiiiiiiiiier e e e e e s e e e e e e e 9
Network-based DEPIOYMENT .........uiiiiiiie e e e e e s e r e e e e e s e eanes 9
0T = o | LY RR 10
Lol = oo PSP PP PPPRPPO 10

ModSecurity COre RUIEST™ ...ttt 10



http://www.breach.com

ModSecurity® Reference Manual

OVEIVIBIW ..ttt ettt e et e e e ettt e e e a bt e e e e s et e e e ans et e e e e sttt e e e ansseeeeeannbeaeeennteeeenanns 11
(00T {01 =Y G0 o = o RSP 11

S = = 1o PR 12

Configuration DIFECHIVES .........uvviiiiiiiiie ittt e e aaes 15
ST o3 Vo3 o o o PSSR 15
SECAr QUIMBNT SEPATI AL OF oot e e e e e aara e e e e e aaaees 16
SECAUAI L ENQGI N oo e e e e s et r e e e e e e e e atrrnaes 16
SECAUAI L LOQ ciiiiiiiiieee e 17
SECAUAT T LOGZ oottt e e e et e e e e e e aan 17
SECAUdI t LOGDI I IMOAE ..ot 17
SeCAUdI t LOGFi | €MDAE ..ot 18
SECAUAI L LOGPAI 1S i e e e e e e e e e e aeraaaes 18
SecAudi t LOgREl eVaNnt St At US ....uvviiiiiiiiiiciiieeee et 20
SecAudi t LogSt oragebDi I oo 20
SECAUAI £ LOGTY PO ettt ek e et e e e e r e e e e nbreeeeane 20
SecCacheTr ansf or mat i ons (Deprecated/Experimental) ........ccoovvveveiiiieieeiiiineennne 21
1T o3 @ o1 o 1o | A 0. USSR 21
SecConPoNENt Si gNAL UI € ooooiiiiiieieeee et e e e e e s e e e e e e e e e e atrraees 22
S Yo @ ol ol =T o) o I =T A o o USSP 22
SECCOO0KIT EFOF MBL . e e e e s a e e e e e 23
TS Tod = =1 . PRSP 23
SECDEDUGLOG ittt 23
SECDEDUGLOGLEVE] oo 23
SECDEf AUI T ACT T ON et e e e e e e nnbe e e e e e 24
S Tod € =T ] o L0101 o] B o PR 25
Sec@uardi ankog .o 25
ST o3 1Y =Y g = RS SSP 26
ST o o | o) = o PSSR 26
SeCPdf Prot @Ct MBt hOd ....oooiee e 27
SECPAf Prot @CT SECT BT uiiiiiiiiiii ettt et e e e eeeanes 27
SECPAf Prot @Ct Ti MBOUL ..ueiiiiiiiiii ettt e et e e e e e e e nnreeeeeanes 27
SecPdf Prot eCt TOKENNAME ... 28
SECREQUEST BOUYACCESS ..oiiiiiiiiiiie ettt e st e e e e e e e nbee e e e e 28
SECREQUEST BOOYLI M T i e e 28
SecRequest BOAYNOFI | @SLi M T oo 29
SecRequest Bodyl NMEMDIr YLI Mt .o 29
SecRespONSEBOAYLI Mt . 30
SecResponseBodyLi Mt ACT T ON oo 30
SeCRESPONSEBOAYM MBTYPE .ottt e e 30
SecResponseBodyM MEBTYPEST A& ...coooiiiiiiiiiiie e 31
SECRESPONSEBOUYACCESS oottt et eeeaae 31
SECRUI B e e e e e re e e e e 31




ModSecurity® Reference Manual

SECRUI €I NNEIT L ANCE ...iiiiiii e 34
SECRUI €ENQGI NE oo 35
SECRUI EREMDVEBY | A ..o 36
SECRUI EREMDVEBYIMEQ ittt e e 36
SecRul eScri pt (EXPErimental) .........ccceeeiiiiiiiiiiiiie e 36
SecRul eUpdat @ACt T ONBY | A ..o 38
SECSEI VA Si gNAL UM © cevreeiiiie ittt e e e et e e e e e e s s st ae e e e e e e e e e e ntreneeas 39
T o I 11101 PRSP 39
S TSTo1 o] o= To 15 N PSP PP PPPPPTRPPPPRPN 39
SeCUpl 08dFi | EMDUE ... 40
SeCUpPl 0AAKEEPFI | BS e 40
LYo T o1 Y o] o I o USSR 41

Processing PhaSES ........uueiiiiiiiiiiiiiiee et e e e e 43
Phase ReqUESE HEAOEN'S ......oooiiiieieeeee et e e e e e e e e e e e s 44
Phase REQUESE BOOY ......cooiiiiiieiiiiie ettt 44
Phase RESPONSE HEATENS .......coiiiiiiiiiiiiii et 44
Phase RESPONSE BOUY ........uvviiiiiiiiiie ettt e e e e e e e 45
0= oo o 1 o PR 45

VATADIES ... 46
ARGS ..ot b et bt e h e e e nr e e e nn e e anne e nneeean 46
ARGS_COMBI NED_SI ZE ......oiiiiiieiiie ettt snee e 47
ARGS _INAMES ...ttt ettt ettt e et e ettt e e bt e e en bt e e st e e e abbeeabbeesnneennneeean 47
A €S € N RPN 47
ARGS_GET_INANES ...ttt ettt ettt e e e b s b e s ne e nne e 47
ARGS _POST ittt bttt n e 47
ARGS_POST_INAMES ...ttt ettt ettt et e e e st e e bb e e e nneesnneeaneeeans 47
AUTH _TYPE ..ttt ettt et e e et e e s it e e e bt e e e abbe e e bbeesnneeanneeeans 48
N TSR 48
I I SRR 48
FI LES_COVBI NED_SI ZE .....oiiiiiiiiiii ettt 48
FILES_NAMES ..otttk etk e bt e et e s b e s e e s s 48
FILES_SI ZES ..ottt ettt 48
FILES_TIMPNANES ...ttt ettt ettt e bt b e e bb e e s be e e s be e e sbeeesnneeas 49
€ LTSRS 49
HI GHEST _SEVERI TY .ottt ettt ettt ettt st e st e e enneeesnneeas 49
IMATCHED _VAR ...ttt e st e st n e nane s 50
MATCHED VAR INAME ...ttt ettt e e 50
MODSEC _BUI LD ..ttt e e s 50
MULTI PART_CRLF_LF_LINES ...ttt e 50
MULTI PART_STRI CT_ERROR ....oiiiiiiiiiiieiiee ettt 51
MULTI PART_UNVATCHED BOUNDARY ....coiuiiiiiitieeiiiieesiieeasiieessieesssseesssnessseessneessnneens 51
PATH I NFO ..ttt b e sbe e s s e s s 52




ModSecurity® Reference Manual

QUERY_STRI NG ..ottt ettt eee e e st s et eee e e s eeees s see et s eee et eseee s s sereeees 52
REMOTE_ADDR ....vcvoveeeeeeeeeeeeeeeeeeseeseeeseeseeeeseeeeseesees e s sseesees e seesesees s ssees s eeeeeeseese. 52
REMOTE_HOST ooveveeeeeeeeeeeeeeeeee e e e st eee e ee e teeseee et eseeseee e s eseeseee e s eseeseeeeeeseseeses 52
REMOTE. PORT ..voevotveeteeeeeeeeeeeeeesseeseeseeseeesseseseesess et esseseessseseseeseeeseeseseeseeeeseseseesens 52
REMOTE_USER ....vovoveeveeeeeeeeeeeeeeseeeeseeseee e eeeeseesesssee s essesees e esesseseeeseeseseeseeseseeeseeses 53
REQBODY_PROCESSOR ...ttt eeeeeeeeeeeeeeeeeeesees e ssesees s eseesees s ssees s e esesne. 53
REQBODY_PROCESSOR _ERROR .....cveveteeeeeeeeeseeseseesseeseeseeseessssesessessesssssseeessne. 53
REQBODY_PROCESSOR ERROR IMBG .....eceeeeeeeeeeeeeeeeeseeeseseseeeseeses s sseesees e eeesese. 53
REQUEST _BASENAE ..ot eeeeseeseeeeeeeeeteesees e sesseesesseesseseeseeseeseseeseeseeeseeseeses 53
REQUEST _BODY .vooveeeeeeeeeeeeeeesseeeeeseeseeeseeeeeseesess et ssseseesseesessesessseeseseeseeseseseseesens 54
REQUEST _COOKI ES ...ooeeeeveeeeeeee e eeeeseeseeeeeeeeeseesessseesessseseeseseseseeseesseeseseeseeseseeseseeses 54
REQUEST_COOKI ES_NANES .....veveeeeeeeeeeeeeeeeeeee e eeeseeses e esee s ss s s sne. 54
REQUEST _FI LENANE ..ottt e e eees s ee e es s eseere. 55
REQUEST _HEADERS ....eeveeveeeeeeeesee et esees e e eeeesees e sseeses e e s s s e eseeeees e eeseere 55
REQUEST _HEADERS. NANES .....ceveveveeteeeeeeeeeesesseeesesseseeseeeseeseseesseeseseesesseseseesesens 55
REQUEST LI NE voveeeeeeeeeeeeseee s e eseeseeesseseeseeseseseeseessesees s esesseseesseeseseeseeseseseseerens 55
REQUEST IVETHOD ..ottt seee e teesees e s essesees e s essesees e s eseeseeeeseeeseeses 55
REQUEST _PROTOUOL. ..o eeeeeeee et sees s es e s ee s eseene. 56
REQUEST _URL oo eeee ettt s e et s s s e es e ee e s e s eseene. 56
REQUEST _URL _RAW. ...ttt ee s s ees s e s s e e sse s e ese s 56
RESPONSE._ BODY ....oveoteeeeeeeeeeeseeeeeeeeeseeseesseeseeseeseesseesesseeseesseeseeseeseesseeseseeseeseseseeseesenes 56
RESPONSE_ CONTENT _LENGTH w...voveveeteeeeeeteeseseeeesesseseeseseeeeseseseseeseseseesesesseseenens 57
RESPONSE._ CONTENT _TYPE .ooeeveeveeeeeeeeeeeeeetesesseeeseesseseeseseseeseseesseesesseseeseseeseseenes 57
RESPONSE_ HEADERS .....oovoeveeeee e eeeeeee e eeeeeeee e e sses s e e s es e sseeeees s ene. 57
RESPONSE_HEADERS. NANES .......cveveeteeeeeeeeeeseeseeeesseeseseeseessesses s sssseseeeeessne. 57
RESPONSE_ PROTOUOL. ...t eeeeeee e eeesese et eses s s s s e ese s s e eseene 57
RESPONSE. STATUS ..ottt seeseeeeeeeeeteesees e seeseesees e esseseeseeeseeseseeseeeeseseeseeses 57
RULE oottt e et e e s et eeeee e e s s e e e ee s ee et eeeeee et eseeseee e s et eseee et eseen e eeeereeres 58
SCRI PT_BASENANE .....cooveveeeeeteeeee et eeeseeeeeeeeseeseesseeseeseaseeseessessseseesesseeseeseessesseeseseeees 58
SCRI PT_FI LENANE ..ottt eeee e seees s se s s et se e s eensenenees 58
SCRI PTGl D oottt e e ee s s et ee e e ee s s sereeees 58
SCRI PT_GROUPNANE ...t eeeeeeeeeeeeeeesees e sseaseeseseesee et esees st esess s eensssenees 59
SCRI PT_IMODE ..oeveveeeeeeeeeeeeeeeeee et e e es s aes e seeseee e e s esees s eese et eseseseeseseee e seeseeseeees 59
SCRI PT U D oottt eee e esees e et aseeseee e s et eeseseeeseeseesseeseeseeseeees 59
SCRI PT_USERNANE ......oovoveeveeteeeee e eeeseeseeeeeseeseeseeeeeeseaseeseessessseseeseseeesesessseseeeseseeees 59
SERVER ADDR .....eovoteeeeeeteeeeeeeeeeee e e eeese e s e esees e s s eeees s sses e eee s e s e s enserenees 59
SERVER NAVE ...ttt eee s ee s e e s esees s s e et es e eee s esees s eenseseeees 60
SERVER _PORT ..ottt et et s e ees e et ees e e s esees e s st es e eees e sees s eessereeees 60
SESSI ON oot eee e s eee et e s s s eee e e s s eee e e s eseee e e s et ee e et e s ee et eereneeees 60
SESSI ONI D oot eeee e e s s e e e s eseee e e s et esees e es et eeseseeeseeseeeseeseeseeseeees 60
T1VE oottt e et e et e et ee e e et e et et e et et e et e et et n e 60
THIVE_DAY oottt ettt ettt s et ees et e et ee e s et ee e ereeeie 60




ModSecurity® Reference Manual

THIME _EPOCH ...t e e e e s s et e e e e e e e e s st b e aeeeeaeeeeaanes 61
THIME _HOUR L.ttt e ettt e e e e e s e et r e e e e e e e e e s s eatabeaeeeeaeeseannnes 61
TEIVE M N ettt ettt ettt ettt ettt ettt et e et et et et eeetetenans 61
THIVE_IVON .ottt ettt ettt ettt et et et et et et et et et et e teteens 61
LI S = TR 61
THIME MDAY et e et e e e e e e e e et e — et e e e e e s e et e e e e e e e e e e e atrrrarraaaeeaaaants 61
TEIME _YEAR L.ttt ettt e e e e e e et et e e e e e e e s e eeaa b b ae e e e eaeeessaatatraeeeeaeeaaaaanes 62
I G USSP PRRRRRRN 62
L1050 5 62
WVEBAPPI D ..ottt e et a e e e e e aaraaae 62
VEBSERVER ERROR _LOG .....coviiiireceeteieeeseseete s esenses s esees s eesessssennesensnsanennenenennans 63
D3 U PRRRR 63

Transformation FUNCLIONS ..........ueiiiiiiiiiiiiee e e e e 65
DASEBADECOAE ..o ———————————— 65
DASEBAENCOAE ... ———————— 65
CONPI €SSWAT T @SPACE oottt e e e e e s nbreeeeane 65
CSSDECOUE ... 65
ESCAPESEUDECOUE ... e e 66
T Yo o Lo [T TP 66
NEXENCOUE .. ——————— 66
Nt M ENE T T YDECOAE oo 66
JIES] B =ToX o Lo L= PO PPPOPPRPPO 66
=T 0T ) O o TP PPP S PPPPPP 66
01T T o Fo = SRR 67
100 1SRRI 67
10 1= 67
NOIr MBI T SEPAL N oo 67
NOr MBI T SEPAt W N oo 67
PAr i TYEVENTDI T e 67
(0= LI AY4® o [ I oY I SRR 67
(o= LRI Y74 =T o I o N RO 67
FEIMDVENUL | S oo 67
FEMDVEWAT T @SPACE .ot e s 67
FEPI ACECOMITENT 'S ..oiiiiiiiiiiie ettt e e e st e e s e e e e enres 68
FEPIACENUI T S o 68
U I Y o o Yo [ TR 68
U I YooY [ =10 o | TSP 68
UF L BENCOOE o ————— 68
Shal (o 68
LA T 1 1= PP PPPPPPPPPPPRS 68
LS A 01 e | L S PP PP PRP PP 68
LA T 0 U PRERR 68




ModSecurity® Reference Manual

o LSRR 70
= Y I 1 PRSP 70
E210] 0= 0o [ PSP P T SPPPP PO PPPPPTRPPPPRPN 71
=0 [ [ o 0 o IR PO PPPPPTRPPPPRPN 71
0] o Yo G USSR 72
o= Y o) A1 = PRSPPI 72
(o3 = U o PRSPPI 73
o S RSP 73
(01T 0TSSP PP PPPPPTRPPPPRPN 74
JEPI ECAL BV AT  .eeiiiiiiieie ettt e e ekt e e e st e e e e e b b e e e e e nbeeee e e 74
(0 1 g0 o T PP PPPPPTRPPPPRPN 75
X BC ittt 75
L T =1V L PRSP 76
o SRS 76
0 oo SRR 77
0 o IR ST TT PP PPSPPPPPPON 77
o To o =X S N PSPPSR PPPPPP 78
.53 o P 78
0T 1Y = o o SRR 78
NOAUAT T 1 0 coiieii e ———— 79
[aT0] I oY o TP PP PPP PO 79
S S et 79
AU S B e 80
0] 4= =Y =PSRRI 80
01= 01 oo [T 80
Pl DX Y ettt 81
(=0 LI =T o SRR 81
23 TP TSP P PP 81
SF: LTI ST N o o PP PPUP PP 82
SANT L1 SEMAL CNEM et s 82
SaNi ti SEREQUEST HEAUEBT .oooiiiiiiiiee e e e 82
SaNi ti SERESPONSEHEAUET ..o 82
T SA V=T o PSP PP PPPPPTRPPPPRPN 83
£ = 1 1o PSP 83
LY = A= I o USSR 84
ST T T 0 YT PP P PP PP PP P PP PPPPPPPPPPPPPPIR: 84
Y ] Y T LT PP PP PP PPPPPPPPPPPPPPPRPPPIR 84
LS S I oSS PPUEER 85
] S 2 =T PSP PP PPPPPTRPPPPRPN 85
] 0= 1 AU ST PP TPPRPPPPRIN 86
SRS 86
(= 1 PRSP 86




ModSecurity® Reference Manual

D1 1 0 T O OO U PO UPPOTPPOPRPOPRIN 87

OPEIBLOIS ... 88
DEGI NSW TN e 88
(o0 o1 A= VI 0 =PRSS 88
=T L0 £ A o SRS SP 88
= o PSPPSR 88
0 =P 89
[0 7= 0 o Yo ] QU | o NSRS 89
Ol 89
FNSPECT Fi | 8 it e e 89
= SRR 90
P PO O T PP UPR PP 90
1 90
10 S0 0 1 o I = SRR 91
[ TP PP PPP PP PPPPON 91
0 G TSP PP PTPTTPTRRTPP 91
LS T o PP PP P PP PP PP PP PPPPPPPPPPPPPPPPPIN 92
val i dat @Byt ERANGE ..o a e 92
(2= LRI F= U =T I R P TP U PR UPPTPPOPPPOPRI 92
Val 1 dat @SCREIMA ...ooii e 93
val i dat @Ur I ENCOI NQ .ooiiiiiiiieiiie et 93
val i dat @Ut f BENCOAI N ..oeeiiiiiiiiei e 93
(=T ST Y1 O O PP TPOUPPPPPP 94
WE T DT D e 94

Yo ol (0 0 Lo o IS 95

S S TS 10 (0 = o = N 96

MiSCElANEOUS TOPICS ...ceeiuitiiee ittt e ettt e e e e e e e e e ee s 97
IMPEdANCE MISIMEICH ... e e e 97




ModSecurity® Reference Manual

Introduction

ModSecurity is a web application firewall (WAF). With over 70% of attacks now carried out
over the web application level, organisations need all the help they can get in making their sys-
tems secure. WAFs are deployed to establish an increased external security layer to detect and/
or prevent attacks before they reach web applications. ModSecurity provides protection from a
range of attacks against web applications and allows for HTTP traffic monitoring and real-time
analysiswith little or no changes to existing infrastructure.

HTTP Traffic Logging

Web servers are typically well-equipped to log traffic in a form useful for marketing analyses,
but fall short logging traffic to web applications. In particular, most are not capable of logging
the request bodies. Your adversaries know this, and that is why most attacks are now carried
out via POST requests, rendering your systems blind. ModSecurity makes full HTTP transac-
tion logging possible, alowing complete requests and responses to be logged. Its logging facil-
ities also allow fine-grained decisions to be made about exactly what is logged and when, en-
suring only the relevant data is recorded. As some of the request and/or response may contain
sensitive datain certain fields, ModSecurity can be configured to mask these fields before they
are written to the audit log.

Real-Time Monitoring and Attack Detection

In addition to providing logging facilities, ModSecurity can monitor the HTTP traffic in rea
time in order to detect attacks. In this case, ModSecurity operates as a web intrusion detection
tool, allowing you to react to suspicious events that take place at your web systems.

Attack Prevention and Just-in-time Patching

ModSecurity can also act immediately to prevent attacks from reaching your web applications.
There are three commonly used approaches:

1. Negative security model. A negative security model monitors requests for anomalies, unusual
behaviour, and common web application attacks. It keeps anomaly scores for each request, IP
addresses, application sessions, and user accounts. Requests with high anomaly scores are
either logged or rejected atogether.

2. Positive security model. When a positive security model is deployed, only requests that are
known to be valid are accepted, with everything else rejected. This model requires knownledge
of the web applications you are protecting. Therefore a positive security model works best with
applications that are heavily used but rarely updated so that maintenance of the model is min-
imized.

3. Known weaknesses and vulnerabilities. Its rule language makes ModSecurity an ideal externa
patching tool. External patching (sometimes referred to as Virtual Patching) is about reducing




ModSecurity® Reference Manual

the window of opportunity. Time needed to patch application vulnerabilities often runs to
weeks in many organisations. With ModSecurity, applications can be patched from the outside,
without touching the application source code (and even without any access to it), making your
systems secure until a proper patch is applied to the application.

Flexible Rule Engine

A flexible rule engine sits in the heart of ModSecurity. It implements the ModSecurity Rule
Language, which is a specialised programming language designed to work with HTTP transac-
tion data. The ModSecurity Rule Language is designed to be easy to use, yet flexible: common
operations are simple while complex operations are possible. Certified ModSecurity Rules, in-
cluded with ModSecurity, contain a comprehensive set of rules that implement general-pur-
pose hardening, protocol validation and detection of common web application security issues.
Heavily commented, these rules can be used as alearning tool.

Embedded-mode Deployment

ModSecurity is an embeddable web application firewall, which means it can be deployed as
part of your existing web server infrastructure provided your web servers are Apache-based.
This deployment method has certain advantages:

1.  No changes to existing network. It only takes a few minutes to add ModSecurity to your exist-
ing web servers. And because it was designed to be completely passive by default, you are free
to deploy it incrementally and only use the features you need. It is equally easy to remove or
deactivate it if required.

2. Nosingle point of failure. Unlike with network-based deployments, you will not be introducing
anew point of failure to your system.

3. Implicit load balancing and scaling. Because it works embedded in web servers, ModSecurity
will automatically take advantage of the additional load balancing and scalability features. Y ou
will not need to think of load balancing and scaling unless your existing system needs them.

4. Minima overhead. Because it works from inside the web server process there is no overhead
for network communication and minimal overhead in parsing and data exchange.

5. No problem with encrypted or compressed content. Many 1DS systems have difficulties analys-
ing SSL traffic. Thisis not a problem for ModSecurity because it is positioned to work when
the traffic is decrypted and decompressed.

Network-based Deployment
ModSecurity works equally well when deployed as part of an Apache-based reverse proxy
server, and many of our customers choose to do so. In this scenario, one installation of ModSe-
curity can protect any number of web servers (even the non-Apache ones).




ModSecurity® Reference Manual

Portability
ModSecurity is known to work well on a wide range of operating systems. Our customers are
successfully running it on Linux, Windows, Solaris, FreeBSD, OpenBSD, NetBSD, AlX, Mac
OS X, and HP-UX.

Licensing
ModSecurity is available under two licenses. Users can choose to use the software under the
terms of the GNU General Public License version 2 (licence text is included with the distribu-
tion), as an Open Source / Free Software product. A range of commercial licensesis also avail-
able, together with arange of commercial support contracts. For more information on commer-
cial licensing please contact Breach Security.

Note
ModSecurity, mod_security, ModSecurity Pro, and ModSecurity Core Rules are trademarks or re-

gistered trademarks of Breach Security, Inc.

10



ModSecurity® Reference Manual

ModSecurity Core Rules™

Overview

Core

ModSecurity is a web application firewall engine that provides very little protection on its
own. In order to become useful, ModSecurity must be configured with rules. In order to enable
users to take full advantage of ModSecurity out of the box, Breach Security, Inc. is providing a
free certified rule set for ModSecurity 2.x. Unlike intrusion detection and prevention systems,
which rely on signatures specific to known vulnerabilities, the Core Rules provide generic pro-
tection from unknown vulnerabilities often found in web applications, which are in most cases
custom coded. The Core Rules are heavily commented to allow it to be used as a step-by-step
deployment guide for ModSecurity. The latest Core Rules can be found at the ModSecurity
website - http://www.modsecurity.org/projects/rules/.

Rules Content
In order to provide generic web applications protection, the Core Rules use the following tech-
niques:
HTTP protection - detecting violations of the HTTP protocol and alocally defined usage policy.
Common Web Attacks Protection - detecting common web application security attack.

Automation detection - Detecting bots, crawlers, scanners and other surface malicious activity.

Trojan Protection - Detecting access to Trojans horses.
Error Hiding - Disguising error messages sent by the server.

11


http://www.modsecurity.org/projects/rules/

ModSecurity® Reference Manual

Installation

ModSecurity installation requirements:

1. ModSecurity 2.x works only with Apache 2.0.x or higher. Version 2.2.x is highly recommen-
ded.

2. Makesureyou havenod_uni que_i d installed.
mod_unique_id is packaged with Apache httpd.

3. libapr and libapr-util

http://apr.apache.org/
4. libpcre

http://www.pcre.org/
5. libxml2

http://xml soft.org/downl oads.html
6. libluav5.1.x

Thislibrary is optional and only needed if you will be using the new Lua engine.
http://www.lua.org/download.html

Note that ModSecurity requires the dynamic libraries. These are not built by default in the
source distribution, so the binary distribution is recommended.

7. libcurl v7.15.1 or higher
If you will be using the ModSecurity Log Collector (mlogc) to send audit logs to a central re-
pository, then you will also need the curl library.

http://curl .haxx.seflibcurl/

Note

Many have had issues with libcurl linked with the GnuTLS library for SSL/TLS support. It isre-
commended that the opensd library be used for SSL/TLS support in libcurl.

ModSecurity installation consists of the following steps:

Stop Apache httpd
Unpack the ModSecurity archive
3. Building differsfor UNIX (or UNIX-like) operating systems and Windows.
e UNIX
a.  Runthe configure script to generate a Makefile. Typically no options are needed.
./configure

Options are available for more customization (use. / confi gure --hel p for afull
list), but typically you will only need to specify the location of the apxs command in-
stalled by Apache httpd with the - - wi t h- apxs option.

./configure --wth-apxs=/path/to/httpd-2.x.y/bin/apxs

12


http://apr.apache.org/
http://www.pcre.org/
http://xmlsoft.org/downloads.html
http://www.lua.org/download.html
http://curl.haxx.se/libcurl/

ModSecurity® Reference Manual

Note

There are certain configure options that are meant for debugging an other development use. If en-
abled, these options can substantially impact performance. These options include al -
- debug- * optionsaswell asthe- - enabl e- per f or nance- neasur enent s options.

b. Compilewith: make
c. Optionally test with: make t est

Note

Thisis step is still a bit experimental. If you have problems, please send the full output and error
from the build to the support list. Most common issues are related to not finding the required
headers and/or libraries.

Optionally build the ModSecurity Log Collector with: make m ogc

e. Optionaly install m ogc: Review the | NSTALL file included in the
apache2/mlogc-src directory in the distribution.

f.  Instal the ModSecurity module with: make i nst al |
*  Windows (MSVC++ 8)
a  Edit Makefi | e. wi n to configure the Apache base and library paths.
b. Compilewith: nnake -f Makefile.w n
c. Install the ModSecurity module with: nmake -f Makefile.w n install
d

Copy thel i bxml 2. dl | and | ua5. 1. dl | tothe Apache bi n directory. Alternat-
ively you can follow the step below for using LoadFile to load these libraries.

4. Edit the main Apache httpd config file (usually ht t pd. conf)
On UNIX (and Windows if you did not copy the DLLs as stated above) you must load libxml2
and luab.1 before ModSecurity with something like this:

LoadFile /usr/lib/libxm 2.so
LoadFile /usr/lib/liblua5k.1.so

L oad the ModSecurity module with:

LoadModul e security2_nodul e nodul es/ nmod_security2. so

5. Configure ModSecurity
6. Start Apache httpd
7. You should now have ModSecurity 2.x up and running.

Note

13



ModSecurity® Reference Manual

If you have compiled Apache yourself you might experience problems compiling ModSecurity
against PCRE. This is because Apache bundles PCRE but this library is also typically provided
by the operating system. | would expect most (all) vendor-packaged Apache distributions to be
configured to use an external PCRE library (so this should not be a problem).

Y ou want to avoid Apache using the bundled PCRE library and ModSecurity linking against the
one provided by the operating system. The easiest way to do thisisto compile Apache against the
PCRE library provided by the operating system (or you can compile it against the latest PCRE
version you downloaded from the main PCRE distribution site). Y ou can do this at configure time
using the - -wi t h- pcr e switch. If you are not in a position to recompile Apache, then, to com-
pile ModSecurity successfully, you'd still need to have access to the bundled PCRE headers (they
are available only in the Apache source code) and change the include path for ModSecurity (as
you did in step 7 above) to point to them (via the - - wi t h- pcr e ModSecurity configure op-
tion).

Do note that if your Apacheisusing an external PCRE library you can compile ModSecurity with
W TH_PCRE_STUDY defined,which would possibly give you a dlight performance edge in regu-
lar expression processing.

Non-gcc compilers may have problems running out-of-the-box as the current build system was
designed around the gcc compiler and some compiler/linker flags may differ. To use a non-gcc
compiler you may need some manua Makefile tweaks if issues cannot be solved by exporting
custom CFLAGS and CPPFLAGS environment variables.

If you are upgrading from ModSecurity 1.x, please refer to the migration matrix at ht-
tp://www.modsecurity.org/documentati on/M odSecurity-Migration-Matrix.pdf

14



ModSecurity® Reference Manual

Configuration Directives

The following section outlines al of the ModSecurity directives. Most of the ModSecurity dir-
ectives can be used inside the various Apache Scope Directives such as Vi rt ual Host ,
Locati on, Locati onMat ch, Di r ect ory, etc... There are others, however, that can only
be used once in the main configuration file. This information is specified in the Scope sections
below. Thefirst version to use a given directive is given in the Version sections below.

These rules, along with the Core rules files, should be contained is files outside of the ht-
tpd.conf file and called up with Apache "Include" directives. This alows for easier updating/
migration of the rules. If you create your own custom rules that you would like to use with the
Core rules, you should create a file caled - nodsecur -

ity_crs_15 custonrul es. conf and place it in the same directory as the Core rules
files. By using this file name, your custom rules will be called up after the standard ModSecur-
ity Core rules configuration file but before the other Core rules. This allows your rules to be
evauated first which can be useful if you need to implement specific "allow" rules or to cor-
rect any false positivesin the Core rules as they are applied to your site.

Note

It is highly encouraged that you do not edit the Core rules files themselves but rather place all
changes (such as SecRul eRenpveByl D, etc...) in your custom rules file. This will alow for
easier upgrading as newer Core rules are released by Breach Security on the ModSecurity web-
site.

SecActi on

Description: Unconditionally processes the action list it receives as the first and only paramet-
er. It accepts one parameter, the syntax of which is identical to the third parameter of

SecRul e.
Syntax: SecActi on actionl, acti on2, acti on3
Example Usage: SecAction no-

| og, phase: 1,initcol : RESOURCE=% REQUEST_ FI LENAME}
Processing Phase: Any

Scope: Any

Version: 2.0.0

Dependencies/Notes: None

SecAction is best used when you unconditionally execute an action. This is explicit triggering
whereas the normal Actions are conditional based on data inspection of the request/response.
This is a useful directive when you want to run certain actions such asi ni t col toinitiaize
collections.

15



ModSecurity® Reference Manual

SecAr gunent Separ at or

Description: Specifies which character to use as separator for application/
X-ww\ form url encoded content. Defaults to & Applications are sometimes (very
rarely) written to use a semicolon (; ).

Syntax: SecAr gunent Separ at or char act er
Example Usage: SecAr gunrent Separ at or
Processing Phase: Any

Scope: Main

Version: 2.0.0

Dependencies/Notes: None

This directive is needed if a backend web application is using a non-standard argument separ-
ator. If thisdirective is not set properly for each web application, then ModSecurity will not be
able to parse the arguments appropriately and the effectiveness of the rule matching will be
significantly decreased.

SecAudi t Engi ne
Description: Configures the audit logging engine.
Syntax: SecAudi t Engi ne On| O f | Rel evant Onl y
Example Usage: SecAudi t Engi ne On
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: Can be set/changed with the"ct | " action for the current transaction.
Example: The following example shows the various audit directives used together.

SecAudi t Engi ne Rel evant Only

SecAudi tLog | ogs/audit/audit. | og

SecAudi t LogParts ABCFHZ

SecAudi t LogType concurrent

SecAudi t LogSt orageDi r | ogs/ audi t

SecAudi t LogRel evant St at us ~(?: 5| 4\d[ "4])

Possible values are;

e On -logal transactions by default.
e O f -donotlog transactions by default.

* Rel evant Onl y - by default only log transactions that have triggered a warning or an error, or
have a status code that is considered to be relevant (see SecAudi t LogRel evant St at us).

16



ModSecurity® Reference Manual

SecAudi t Log

Description: Defines the path to the main audit log file.

Syntax: SecAudi t Log / path/to/ auditl og

Example Usage: SecAudi t Log /usr/ I ocal / apache/l ogs/audit.| og
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: This file is open on startup when the server typicaly still runs as root.
Y ou should not allow non-root users to have write privileges for this file or for the directory it
isstored in..

Thisfile will be used to store the audit log entries if serial audit logging format is used. If con-
current audit logging format is used this file will be used as an index, and contain a record of
all audit log files created. If you are planning to use Concurrent audit logging and sending your
audit log data off to a remote Console host or commercial ModSecurity Management Appli-
ance, then you will need to configure and use the ModSecurity Log Collector (mlogc) and use
the following format for the audit log:

SecAudi tLog "|/path/to/ m ogc /path/to/m ogc. conf"”

SecAudi t Log?2

Description: Defines the path to the secondary audit log index file when concurrent logging is
enabled. See SecAudi t Log2 for more details.

Syntax: SecAudi t Log2 / pat h/t o/ auditl og2

Example Usage: SecAudi t Log2 /usr/ | ocal / apache/l ogs/audit 2.1 og
Processing Phase: N/A

Scope: Any

Version: 2.1.2

Dependencies/Notes. A main audit log must be defined via Sec Audi t Log before this direct-
ive may be used. Additionally, thislog isonly used for replicating the main audit log index file
when concurrent audit logging is used. It will not be used for non-concurrent audit logging.

SecAudi t LogD r Mode

Description: Configures the mode (permissions) of any directories created for concurrent audit
logs using an octal mode (as used in chmod). See SecAudi t LogFi | eMbde for controlling
the mode of audit log files.

Syntax: SecAudi t LogDi r Mode oct al _node| "defaul t"

Example Usage: SecAudi t LogDi r Mode 02750

17



ModSecurity® Reference Manual

Processing Phase: N/A

Scope: Any

Version: 2.5.10

Dependencies/Notes: This feature is not available on operating systems not supporting octal
file modes. The default mode (0600) only grants read/write access to the account writing the
file. If access from another account is needed (using mpm-itk is a good example), then this dir-
ective may be required. However, use this directive with caution to avoid exposing potentially
sensitive data to unauthorized users. Using the value "default" will revert back to the default
setting.

Note
The pr

ocess umask may still limit the mode if it is being more restrictive than the mode set using

thisdirective.

SecAudi t LogFi | eMode

Description: Configures the mode (permissions) of any files created for concurrent audit logs
using an octal mode (as used in chmod). See SecAudi t LogDi r Mode for controlling the
mode of created audit log directories.

Syntax: SecAudi t LogFi | eMbde octal node| "defaul t"

Example Usage: SecAudi t LogFi | eMbde 00640

Processing Phase: N/A

Scope: Any

Version: 2.5.10

Dependencies/Notes: This feature is not available on operating systems not supporting octal
file modes. The default mode (0600) only grants read/write access to the account writing the
file. If access from another account is needed (using mpm-itk is a good example), then this dir-
ective may be required. However, use this directive with caution to avoid exposing potentially
sensitive data to unauthorized users. Using the value "default” will revert back to the default
Setting.

Note
The pr

ocess umask may still limit the mode if it is being more restrictive than the mode set using

this directive.

SecAudi t LogPart s

Description: Defines which part of each transaction are going to be recorded in audit log. Each
part is assigned a single letter. If a letter appears in the list then the equivalent part of each
transactions will be recorded. See below for thelist of all parts.

18



ModSecurity® Reference Manual

Syntax: SecAudi t LogParts PARTS

Example Usage: SecAudi t LogParts ABCFHZ
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: At this time ModSecurity does not log response bodies of stock Apache
responses (e.g. 404), or the Ser ver and Dat e response headers.

Default: ABCFHZ.

Note

Please refer to the ModSecurity Data Formats document for a detailed description of every avail-
able part.

Available audit log parts:

e A- audit log header (mandatory)

* B-request headers

* C-request body (present only if the request body exists and ModSecurity is configured to inter-
cept it)

» D- RESERVED for intermediary response headers, not implemented yet.

* E - intermediary response body (present only if ModSecurity is configured to intercept response
bodies, and if the audit log engine is configured to record it). Intermediary response body is the
same as the actual response body unless ModSecurity intercepts the intermediary response body,
in which case the actual response body will contain the error message (either the Apache default
error message, or the ErrorDocument page).

» F - final response headers (excluding the Date and Server headers, which are aways added by
Apache in the late stage of content delivery).

» G- RESERVED for the actual response body, not implemented yet.

e H-auditlog trailer

e | - Thispartisareplacement for part C. It will log the same data as C in al cases except when
mul ti part/form dat a encoding in used. In this case it will log a fake appl i cati on/
x-ww\ f orm ur |l encoded body that contains the information about parameters but not
about the files. This is handy if you don't want to have (often large) files stored in your audit
logs.

 J - RESERVED. This part, when implemented, will contain information about the files up-
loaded using mul t i part/f or m dat a encoding.

» K- This part contains a full list of every rule that matched (one per line) in the order they were
matched. The rules are fully qualified and will thus show inherited actions and default operators.
Supported as of v2.5.0

e Z-fina boundary, signifies the end of the entry (mandatory)

19



ModSecurity® Reference Manual

SecAudi t LogRel evant St at us
Description: Configures which response status code is to be considered relevant for the pur-
pose of audit logging.
Syntax: SecAudi t LogRel evant St at us REGEX
Example Usage: SecAudi t LogRel evant St atus ~(?: 5| 4\ d[ *4])
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: Must have the SecAudi t Engi ne set to Rel evant Onl y. The para-
meter is aregular expression.

The main purpose of this directive is to alow you to configure audit logging for only transac-
tions that generate the specified HTTP Response Status Code. This directive is often used to
the decrease the total size of the audit log file. Keep in mind that if this parameter is used, then
successful attacks that result in a200 OK status code will not be logged.

SecAudi t LogSt orageDi r

Description: Configures the storage directory where concurrent audit log entries are to be
stored.

Syntax: SecAudi t LogSt orageDir /path/to/storage/dir

Example Usage: SecAudi t LogSt orageDir /usr/ | ocal / apache/ | ogs/ audi t
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: SecAuditLogType must be set to Concurrent. The directory must already
be created before starting Apache and it must be writable by the web server user as new files
are generated at runtime.

As with all logging mechanisms, ensure that you specify a file system location that has ad-
eguate disk space and is not on the root partition.

SecAudi t LogType
Description: Configures the type of audit logging mechanism to be used.
Syntax: SecAudi t LogType Seri al | Concurrent
Example Usage: SecAudi t LogType Seri al
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: Must specify SecAudi t LogSt or ageDi r if you use concurrent log-

20



ModSecurity® Reference Manual

ging.
Possible values are:

1. Serial -al auditlog entries will be stored in the main audit logging file. This is more con-
venient for casual use but it is slower as only one audit log entry can be written to the file at
any onefile.

2. Concurrent -audit log entries will be stored in separate files, one for each transaction. Con-
current logging is the mode to use if you are going to send the audit log data off to a remote
ModSecurity Console host.

SecCacheTr ansf or mati ons

(Deprecated/Experimental)

Description: Controls caching of transformations. Caching is off by default starting with 2.5.6,
when it was deprecated and downgraded back to experimental.

Syntax: SecCacheTransformati ons On| O f [options]
Example Usage: SecCacheTr ansf or mati ons On "mi nl en: 64, naxl en: 0"
Processing Phase: N/A
Scope: Any
Version: 2.5.0
Dependencies/Notes: N/A
First parameter:
» On - cache transformations (per transaction, per phase) allowing identical transformations to be
performed only once. (default)
e O f - do not cache any transformations, forcing al transformations to be performed for each
rule executed.
The following options are allowed (comma separated):
* increnental:on|off -enabling this option will cache every transformation instead of just
the final transformation. (default: off)

* rmaxitens: N-donot allow morethan N transformations to be cached. The cache will then be
disabled. A zero value is interpreted as "unlimited”. This option may be useful to limit caching
for aform with alarge number of ARGS. (default: 512)

e m nl en: N- do not cache the transformation if the value's length is less than N bytes. (default:
32)

» maxl| en: N - do not cache the transformation if the value's length is more than N bytes. A zero
valueisinterpreted as "unlimited”. (default: 1024)

SecChrootDir

Description: Configures the directory path that will be used to jail the web server process.

21



ModSecurity® Reference Manual

Syntax: SecChrootDir /path/to/chroot/dir
Example Usage: SecChr oot Di r / chr oot
Processing Phase: N/A

Scope: Main

Version: 2.0.0

Dependencies/Notes: This feature is not available on Windows builds. The internal chroot
functionality provided by ModSecurity works great for simple setups. One example of asimple
setup is Apache serving static files only, or running scripts using modules.builds. Some prob-
lems you might encounter with more complex setups:

1. DNSlookupsdo not work (thisis because this feature requires a shared library that is loaded on
demand, after chroot takes place).

2. You cannot send email from PHP because it uses sendmail and sendmail is outside thejail.

3. In some cases Apache graceful (reload) no longer works.
Y ou should be aware that the internal chroot feature might not be 100% reliable. Due to the
large number of default and third-party modules available for the Apache web server, it is not
possible to verify the internal chroot works reliably with all of them. A module, working from
within Apache, can do things that make it easy to break out of the jail. In particular, if you are
using any of the modules that fork in the module initialisation phase (e.g. nod_f ast cgi ,
nod_f cgi d, nod_cgi d), you are advised to examine each Apache process and observe its
current working directory, process root, and the list of open files. Consider what your options
are and make your own decision.

SecConponent Si ghat ur e
Description: Appends component signature to the ModSecurity signature.
Syntax: SecConponent Si gnat ure " COVPONENT_NAME/ X. Y. Z ( COVMENT) "
Example usage: SecConponent Si gnature "Core Rul es/1.2.3"
Processing Phase: N/A
Scope: Main
Version: 2.5.0

Dependencies/Notes: This directive should be used to make the presence of significant ModSe-
curity components known. The entire signature will be recorded in transaction audit log. It
should be used by ModSecurity module and rule set writers to make debugging easier.

SecContentl njection
Description: Enables content injection using actionsappend and pr epend.
Syntax: SecCont ent | nj ection (On| OFf)
Example Usage: SecCont ent | nj ecti on On
Processing Phase: N/A

22



ModSecurity® Reference Manual

Scope: Any
Version: 2.5.0
Dependencies/Notes. N/A

SecCooki eFor mat
Description: Selects the cookie format that will be used in the current configuration context.
Syntax: SecCooki eFormat 0] 1
Example Usage: SecCooki eFormat O
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes. None
Possible values are:
* 0 - useversion 0 (Netscape) cookies. Thisiswhat most applications use. It isthe default value.
* 1 -useversion 1 cookies.

SecDat aDi r
Description: Path where persistent data (e.g. |P address data, session data, etc) isto be stored.
Syntax: SecDatabDir /path/to/dir
Example Usage: SecDat abDi r /usr/ | ocal / apache/ | ogs/ dat a
Processing Phase: N/A
Scope: Main
Dependencies/Notes: This directive is needed when initcol, setsid an setuid are used. Must be
writable by the web server user.

SecDebuglLog
Description: Path to the ModSecurity debug log file.
Syntax: SecDebuglLog / pat h/ t o/ nodsec- debug. | og
Example Usage: SecDebuglLog /usr/ | ocal / apache/| ogs/ modsec- debug. | og
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes. None

SecDebuglLogLevel

Description: Configures the verboseness of the debug log data.

23



ModSecurity® Reference Manual

Syntax: SecDebuglLoglLevel 0| 1| 2| 3| 4| 5| 6] 7| 8] 9
Example Usage: SecDebuglLoglLevel 4

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: Levels 1 - 3 are always sent to the Apache error log. Therefore you
can always use level 0 as the default logging level in production. Level 5 is useful when de-
bugging. It is not advisable to use higher logging levels in production as excessive logging can
slow down server significantly.

Possible values are:
e 0-nologging.
* 1 - errors(intercepted requests) only.
e 2 -warnings.
* 3 -notices.
* 4 - details of how transactions are handled.
» 5 -asabove, but including information about each piece of information handled.
* 9 -log everything, including very detailed debugging information.

SecDef aul t Acti on

Description: Defines the default action to take on arule match.
Syntax: SecDef aul t Action actionl, action2, acti on3

Example Usage: SecDef aul t Acti on
| og, audi t | og, deny, st at us: 403, phase: 2

Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: Rules following a SecDef aul t Act i on directive will inherit this set-
ting unless a specific action is specified for an individual rule or until another SecDe-
faul t Acti on isspecified. Take specia note that in the logging disruptive actions are not al-
lowed, but this can inadvertently be inherited using a disruptive action in SecDef aul t Ac-
tion.

The default value is minimal (differing from previous versions):

SecDef aul t Acti on phase: 2, | og, audi t| og, pass

Note
SecDef aul t Act i on must specify a disruptive action and a processing phase and cannot con-

24



ModSecurity® Reference Manual

tain metadata actions.

Warning

SecDef aul t Acti on is not inherited across configuration contexts. (For an example of why
this may be a problem for you, read the following ModSecurity Blog entry ht-
tp://blog.modsecurity.org/2008/07/modsecurity-tri.html).

SecGeolLookupDb

Description: Defines the path to the geographical database file.

Syntax: SecGeoLookupDb /path/to/db

Example Usage: Sec GeoLookupDb /usr/ | ocal / geo/ dat a/ GeoLiteCity. dat
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: Check out maxm nd. comfor free database files.

SecCuar di anLog

Description: Configuration directive to use the httpd-guardian script to monitor for Denia of
Service (DoS) attacks.

Syntax: SecGuar di anLog |/ pat h/to/ htt pd- guardi an

Example Usage: SecCGuar di anLog |/ usr/ | ocal / apache/ bi n/ ht t pd- guar di an
Processing Phase: N/A

Scope: Main

Version: 2.0.0

Dependencies/Notes: By default httpd-guardian will defend against clients that send more than
120 requests in aminute, or more than 360 requests in five minutes.

Since 1.9, ModSecurity supports a new directive, SecGuardianL og, that is designed to send all
access data to another program using the piped logging feature. Since Apache is typically de-
ployed in a multi-process fashion, making information sharing difficult, the ideais to deploy a
single external process to observe all requests in a stateful manner, providing additional protec-
tion.

Development of a state of the art external protection tool will be afocus of subsequent ModSe-
curity releases. However, afully functional tool is already available as part of the Apache httpd
tools project [http://www.apachesecurity.net/tools/]. The tool is called httpd-guardian and can
be used to defend against Denial of Service attacks. It uses the blacklist tool (from the same
project) to interact with an iptables-based (Linux) or pf-based (*BSD) firewall, dynamically
blacklisting the offending IP addresses. It can also interact with SnortSam

25


http://blog.modsecurity.org/2008/07/modsecurity-tri.html
http://blog.modsecurity.org/2008/07/modsecurity-tri.html
http://www.apachesecurity.net/tools/
http://www.apachesecurity.net/tools/

ModSecurity® Reference Manual

(http://www.snortsam.net). Assuming httpd-guardian is aready configured (look into the
source code for the detailed instructions) you only need to add one line to your Apache config-
uration to deploy it:

SecCuar di anLog |/ pat h/to/ htt pd-guardi an

SecMar ker

Description: Adds afixed rule marker in the ruleset to be used asatarget inaski pAf t er ac-
tion. A SecMar ker directive essentially creates a rule that does nothing and whose only pur-
poseit to carry the given ID.

Syntax: SecMar ker I D

Example Usage: SecMar ker 9999

Processing Phase: Any

Scope: Any

Version: 2.5.0

Dependencies/Notes. None

SecRul e REQUEST_URI "~/ $" \

“chain, t:none, t:url Decode, t: | owercase, t: nornalisePat h, ski pAfter: 99"
SecRul e REMOTE_ADDR "7127\.0\.0\.1%$" "chai n"
SecRul e REQUEST HEADERS: User - Agent \

"AApache \ (internal dummy connection\)$" "t:none"
SecRul e &REQUEST_ HEADERS: Host "@q 0" \

"deny, | og, status: 400, i d: 08, severity: 4, nsg:"' M ssing a Host Header'"
SecRul e &REQUEST_ HEADERS: Accept "@q 0" \

"l og, deny, | og, st at us: 400, i d: 15, nsg: ' Request M ssi ng an Accept Header'™

SecMar ker 99

SecPdf Pr ot ect

Description: Enables the PDF XSS protection functionality. Once enabled access to PDF files
istracked. Direct access attempts are redirected to links that contain one-time tokens. Requests
with valid tokens are allowed through unmodified. Requests with invalid tokens are also al-
lowed through but with forced download of the PDF files. This implementation uses response
headers to detect PDF files and thus can be used with dynamically generated PDF files that do
not havethe . pdf extension in therequest URI.

Syntax: SecPdf Protect On| O f

Example Usage: SecPdf Protect On

Processing Phase: N/A

Scope: Any

26



ModSecurity® Reference Manual

Version: 2.5.0
Dependencies/Notes: None

SecPdf Pr ot ect Met hod

Description: Configure desired protection method to be used when requests for PDF files are
detected. Possible values are TokenRedi r ect i on and For cedDownl oad. The token re-
direction approach will attempt to redirect with tokens where possible. This allows PDF files
to continue to be opened inline but only works for GET requests. Forced download always
causes PDF files to be delivered as opague binaries and attachments. The latter will always be
used for non-GET requests. Forced download is considered to be more secure but may cause
usability problems for users (" This PDF won't open anymorel!").

Syntax: SecPdf Pr ot ect Met hod net hod

Example Usage: SecPdf Pr ot ect Met hod TokenRedirecti on
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

Default: TokenRedi recti on

SecPdf Pr ot ect Secr et

Description: Defines the secret that will be used to construct one-time tokens. Y ou should use
a reasonably long value for the secret (e.g. 16 characters is good). Once selected the secret
should not be changed as it will break the tokens that were sent prior to change. But it's not a
big deal even if you change it. It will just force download of PDF files with tokens that were is-
sued in the last few seconds.

Syntax: SecPdf Pr ot ect Secret secret

Example Usage: SecPdf Pr ot ect Secret MyRandonBSecret Stri ng
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

SecPdf Pr ot ect Ti neout

Description: Defines the token timeout. After token expires it can no longer be used to allow
access to PDF file. Request will be alowed through but the PDF will be delivered as attach-
ment.

Syntax: SecPdf Pr ot ect Ti neout ti neout
Example Usage: SecPdf Pr ot ect Ti meout 10

27



ModSecurity® Reference Manual

Processing Phase: N/A
Scope: Any

Version: 2.5.0
Dependencies/Notes. None
Default: 10

SecPdf Pr ot ect TokenName

Description: Defines the name of the token. The only reason you would want to change the
name of the token is if you wanted to hide the fact you are running ModSecurity. It's a good
reason but it won't really help as the adversary can look into the algorithm used for PDF pro-
tection and figure it out anyway. It does raise the bar dightly so go ahead if you want to.

Syntax: SecPdf Pr ot ect TokenNane nane

Example Usage: SecPdf Pr ot ect TokenName PDFTOKEN
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes. None

Default: PDFTOKEN

SecRequest BodyAccess

Description: Configures whether request bodies will be buffered and processed by ModSecur-
ity by default.

Syntax: SecRequest BodyAccess On| O f

Example Usage: SecRequest BodyAccess On

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: This directive is required if you plan to inspect POST_PAYLQAD. This
directive must be used along with the "phase:2" processing phase action and REQUEST _BODY
variable/location. If any of these 3 parts are not configured, you will not be able to inspect the
regquest bodies.

Possible values are:

*  On - accessrequest bodies.
e O f -donot attempt to access request bodies.

SecRequest BodyLi m t

Description: Configures the maximum reguest body size ModSecurity will accept for buffer-

28



ModSecurity® Reference Manual

ing.

Syntax: SecRequest BodyLi mit NUVBER | N_BYTES

Example Usage: SecRequest BodyLi mt 134217728

Scope: Any

Version: 2.0.0

Dependencies/Notes: 131072 KB (134217728 bytes) is the default setting. Anything over this
limit will be rejected with status code 413 Request Entity Too Large. Thereisahard limit of 1
GB.

SecRequest BodyNoFi | esLi mt

Description: Configures the maximum request body size ModSecurity will accept for buffer-
ing, excluding the size of files being transported in the request. This directive comes handy to
further reduce susceptibility to DoS attacks when someone is sending request bodies of very
large sizes. Web applications that require file uploads must configure SecRequest -
BodyLi m t to a high value. Since large files are streamed to disk file uploads will not in-
crease memory consumption. However, it's still possible for someone to take advantage of a
large request body limit and send non-upload requests with large body sizes. This directive
eliminates that loophole.

Syntax: SecRequest BodyNoFi | esLinmit NUVBER | N BYTES

Example Usage: SecRequest BodyLi mit 131072

Scope: Any

Version: 2.5.0

Dependencies/Notes. 1 MB (1048576 bytes) is the default setting. This value is very conser-
vative. For most applications you should be able to reduce it down to 128 KB or lower. Any-
thing over the limit will be rejected with statuscode413 Request Entity Too Lar ge.
Thereisahard limit of 1 GB.

SecRequest Bodyl nMenor yLi m t
Description: Configures the maximum request body size ModSecurity will storein memory.
Syntax: SecRequest Bodyl nMenoryLi mit NUMBER | N BYTES
Example Usage: SecRequest Bodyl nMenmoryLimt 131072
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: None
By default the limit is 128 KB:

# Store up to 128 KB in nmenory
SecRequest Bodyl nMenoryLimt 131072

29



ModSecurity® Reference Manual

SecResponseBodyLi m t
Description: Configures the maximum response body size that will be accepted for buffering.
Syntax: SecResponseBodyLi mit NUMBER | N_BYTES
Example Usage: SecResponseBodylLi nmit 524228
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes. Anything over this limit will be rejected with status code 500 Interna
Server Error. This setting will not affect the responses with MIME types that are not marked
for buffering. Thereisahard limit of 1 GB.

By default thislimit is configured to 512 KB:

# Buffer response bodies of up to 512 KB in |ength
SecResponseBodyLinmit 524288

SecResponseBodyLi m t Acti on

Description: Controls what happens once a response body limit, configured with SecRe-

sponseBodyLi i t, is encountered. By default ModSecurity will reject a response body
that is longer than specified. Some web sites, however, will produce very long responses mak-
ing it difficult to come up with areasonable limit. Such sites would have to raise the limit sig-
nificantly to function properly defying the purpose of having the limit in the first place (to con-
trol memory consumption). With the ability to choose what happens once alimit is reached site
administrators can choose to inspect only the first part of the response, the part that can fit into
the desired limit, and let the rest through. Some could argue that allowing parts of responses to
go uninspected is aweakness. Thisistrue in theory but only applies to cases where the attacker
controls the output (e.g. can make it arbitrary long). In such cases, however, it is not possible
to prevent leakage anyway. The attacker could compress, obfuscate, or even encrypt data be-
foreit is sent back, and therefore bypass any monitoring device.

Syntax: SecResponseBodyLi mi t Acti on Rej ect| ProcessParti al

Example Usage: SecResponseBodyLi mi t Acti on ProcessParti al

Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

SecResponseBodyM neType

Description: Configureswhich M ME types are to be considered for response body buffering.
Syntax: SecResponseBodyM nmeType m ne/type

30



ModSecurity® Reference Manual

Example Usage: SecResponseBodyM nmeType text/plain text/htnl

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: Multiple SecResponseBodyM neType directives can be used to
add M ME types.

The default valueist ext / pl ai nt ext/ htm :

SecResponseBodyM neType text/plain text/htmn

SecResponseBodyM neTypesd ear

Description: Clears the list of M ME types considered for response body buffering, allowing
you to start populating the list from scratch.

Syntax: SecResponseBodyM neTypesd ear
Example Usage: SecResponseBodyM neTypesd ear
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: None

SecResponseBodyAccess
Description: Configures whether response bodies are to be buffer and analysed or not.
Syntax: SecResponseBodyAccess On| O f
Example Usage: SecResponseBodyAccess On
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive is required if you plan to inspect HTML responses. This
directive must be used along with the "phase:4" processing phase action and RE-
SPONSE_BODY variable/location. If any of these 3 parts are not configured, you will not be
able to inspect the response bodies.

Possible values are:
*  On - access response bodies (but only if the MIME type matches, see above).
e« O f -donot attempt to access response bodies.

SecRul e

31



ModSecurity® Reference Manual

Description: SecRul e is the main ModSecurity directive. It is used to analyse data and per-
form actions based on the results.

Syntax: SecRul e VARI ABLES OPERATOR [ ACTI ONS]

Example Usage: SecRul e REQUEST _URI "attack" \

"phase: 1,t:none, t:url Decode, t: | owercase, t: nornmalisePat h"
Processing Phase: Any

Scope: Any

Version: 2.0.0

Dependencies/Notes. None

In generdl, the format of thisruleis asfollows:

SecRul e VARI ABLES OPERATCR [ ACTI ONS]

The second part, OPERATOR, specifies how they are going to be checked. The third (optional)
part, ACTI ONS, specifies what to do whenever the operator used performs a successful match
against avariable.

Variables in rules
The first part, VARI ABLES, specifies which variables are to be checked. For example, the
following rule will reject atransaction that has the word dirty in the URI:

SecRul e ARGS dirty
Each rule can specify one or more variables:
SecRul e ARGS| REQUEST_ HEADERS: User - Agent dirty

There is a third format supported by the selection operator - XPath expression. XPath expres-
sions can only used against the special variable XML, which is available only of the request
body was processed as XML.

SecRul e XM.: / xPat h/ Expression dirty

Note

Not all collections support all selection operator format types. Y ou should refer to the documenta
tion of each collection to determine what is and isn't supported.

Collections

A variable can contain one or many pieces of data, depending on the nature of the variable and
the way it is used. We've seen examples of both approaches in the previous section. When a

32



ModSecurity® Reference Manual

variable can contain more than one value we refer to it as a collection.
Collections are always expanded before aruleis run. For example, the following rule:

SecRul e ARGS dirty

will be expanded to:

SecRul e ARGS:p dirty
SecRul e ARGS: q dirty

in arequests that has only two parameters, named p and q.
Collections come in several flavours:

Read-only Created at runtime using transaction data. For example: ARGS
(contains a list of all request parameter values) and RE-
QUEST_HEADERS (contains alist of al request header values).

Transient Read/Write The TX callection is created (empty) for every transaction. Rules
can read from it and write to it (using the set var action, for ex-
ample), but the information stored in this collection will not sur-
vive the end of transaction.

Persistent Read/Write There are severa collections that can be written to, but which are
persisted to the storage backend. These collections are used to
track clients across transactions. Examples of collections that fall
into thistype are | P, SESSI ON and USER.

Operators in rules
In the simplest possible case you will use a regular expression pattern as the second rule para-
meter. This is what we've done in the examples above. If you do this ModSecurity assumes
you want to use the r x (regular expression) operator. Y ou can aso explicitly specify the oper-
ator you want to use by using @ followed by the name of an operator, at the beginning of the
second SecRul e parameter:

SecRule ARGS "@x dirty"

Note how we had to use double guotes to delimit the second rule parameter. This is because
the second parameter now has whitespace in it. Any number of whitespace characters can fol-
low the name of the operator. If there are any non-whitespace characters there, they will all be
treated as a special parameter to the operator. In the case of the regular expression operator the
special parameter is the pattern that will be used for comparison.

The @ can be the second character if you are using negation to negate the result returned by
the operator:

SecRul e &ARGS "! @ x ~0%$"

33



ModSecurity® Reference Manual

Operator negation
Operator results can be negated by using an exclamation mark at the beginning of the second
parameter. The following rule matches if the word di rty does not appear in the User -
Agent request header:

SecRul e REQUEST_HEADERS: User- Agent !dirty

Y ou can use the exclamation mark in combination with any parameter. If you do, the exclama-
tion mark needs to go first, followed by the explicit operator reference. The following rule has
the same effect as the previous example:

SecRul e REQUEST_HEADERS: User - Agent "!@x dirty"

If you need to use negation in arule that is going to be applied to severa variables then it may
not be immediately clear what will happen. Consider the following example:

SecRul e ARGS: p| ARGS: q !dirty
The above ruleisidentical to:

SecRule ARGS:p !dirty
SecRule ARGS: g !'dirty

Warning
Negation is applied to operations against individual operations, not agains the entire variable list.

Actions in rules
The third parameter, ACTI ONS, can be omitted only because there is a helper feature that spe-
cifies the default action list. If the parameter isn't omitted the actions specified in the parameter
will be merged with the default action list to create the actua list of actions that will be pro-
cessed on arule match.

SecRul el nheri tance

Description: Configures whether the current context will inherit rules from the parent context
(configuration options are inherited in most cases - you should look up the documentation for
every directive to determineif it isinherited or not).

Syntax: SecRul el nheritance On| O f
Example Usage: SecRul el nheritance Of
Processing Phase: Any

Scope: Any




ModSecurity® Reference Manual

Version: 2.0.0

Dependencies/Notes: Resource-specific contexts (e.g. Locati on, Di rect ory, etc) cannot
override phasel rules configured in the main server or in the virtual server. This is because
phase 1 isrun early in the request processing process, before Apache maps request to resource.
Virtual host context can override phase 1 rules configured in the main server.

Example: The following example shows where ModSecurity may be enabled in the main
Apache configuration scope, however you might want to configure your VirtualHosts differ-
ently. In the first example, the first VirtualHost is not inheriting the ModSecurity main config
directives and in the second one it is.

SecRul eEngi ne On
SecDef aul t Acti on | og, pass, phase: 2

<Virtual Host *: 80>

Server Nanme appl.com

Server Ali as www. appl. com

SecRul el nheritance O f

SecDef aul t Acti on | og, deny, phase: 1,redirect: http://ww.site2.com

</ Vi r t ual Host >

<Vi rtual Host *: 80>

Server Nane app2. com

Server Al i as www. app2. com

SecRul el nheritance On SecRul e ARGS "attack"

</ Vi r t ual Host >

Possible values are;

*  On - inherit rules from the parent context.
e O f -donotinherit rules from the parent context.

Note

Configuration contexts are an Apache concept. Directives <Directory>, <Fil es>,
<Locat i on>and <Vi r t ual Host > are al used to create configuration contexts. For more in-
formation please go to the Apache documentation section Configuration Sections
[http://httpd.apache.org/docs/2.0/sections.html].

SecRul eEngi ne

Description: Configures the rules engine.
Syntax: SecRul eEngi ne On| O f | Det ecti onOnl y
Example Usage: SecRul eEngi ne On

35


http://httpd.apache.org/docs/2.0/sections.html

ModSecurity® Reference Manual

Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive can aso be controlled by the ctl action
(ctl:ruleEngine=off) for per rule processing.

Possible values are:
e On - processrules.
e O f -donot processrules.

« DetectionOnly - process rules but never intercept transactions, even when rules are con-
figured to do so.

SecRul eRenoveByl d
Description: Removes matching rules from the parent contexts.
Syntax: SecRul eUpdat eActi onByl d RULEI D ACTI ONLI ST
Example Usage: SecRul eRenoveByl D 1 2 "9000-9010"
Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive supports multiple parameters, where each parameter can
either be arule ID, or a range. Parameters that contain spaces must be delimited using double
quotes.

SecRul eRenpveByld 1 2 5 10-20 "400-556" 673

SecRul eRenoveByMsg
Description: Removes matching rules from the parent contexts.
Syntax: SecRul eRenoveByMsg RECGEX
Example Usage: SecRul eRenoveByMsg " FAI L"
Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive supports multiple parameters. Each parameter is a regular
expression that will be applied to the message (specified using the ns g action).

SecRul eScri pt (Experimental)

Description: This directive creates a specia rule that executes a Lua script to decide whether
to match or not. The main difference from SecRul e isthat there are no targets nor operators.

36



ModSecurity® Reference Manual

The script can fetch any variable from the ModSecurity context and use any (Lua) operator to
test them. The second optional parameter is the list of actions whose meaning is identical to
that of SecRul e.

Syntax: SecRul eScri pt /path/to/script.lua [ACTI ONS]
Example Usage: SecRul eScript "/path/to/file.lua" "bl ock"
Processing Phase: Any

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

Note

All Lua scripts are compiled at configuration time and cached in memory. To reload scripts you
must reload the entire ModSecurity configuration by restarting Apache.

Example script:

-- Your script nust define the main entry
-- point, as bel ow
function main()
-- Log sonething at level 1. Normally you shouldn't be
-- logging anything, especially not at level 1, but this is
-- just to show you can. Useful for debuggi ng.
mlog(l, "Hello world!'");

-- Retrieve one vari abl e.
| ocal varl = m getvar (" REMOTE_ADDR');

-- Retrieve one variable, applying one transformation functi on.
-- The second paraneter is a string.
| ocal var2 = mgetvar("ARGS", "l owercase");

-- Retrieve one variable, applying several transformation functions.

-- The second paraneter is now a |list. You should note that m getvar()
-- requires the use of comm to separate collection names from

-- variable nanes. This is because only one variable is returned.

| ocal var3 = mgetvar("ARGS. p", { "l owercase", "conpressWitespace" } );

-- If you want this rule to match return a string

-- containing the error nessage. The nessage nust contain the nane
-- of the variable where the problemis | ocated.

-- return "Variabl e ARGS: p | ooks suspi ci ous!"

-- Oherwise, sinmply return nil.
return nil;
end

37



ModSecurity® Reference Manual

In this first example we were only retrieving one variable at the time. In this case the name of
the variable is known to you. In many cases, however, you will want to examine variables
whose names you won't know in advance, for example script parameters.

Example showing use of m get var s() to retrieve many variables at once:

function main()
-- Retrieve script paraneters.
local d = mgetvars("ARGS", { "lowercase", "htm EntityDecode" } );

-- Loop through the paranters.
for i =1, #d do
-- Exami ne paraneter val ue.
if (string.find(d[i].value, "<script")) then
-- Always specify the nane of the variable where the
-- problemis located in the error nessage.
return ("Suspected XSS in variable " .. d[i].nane .. ".");
end
end

-- Not hi ng wong found.
return nil;
end

Note
Go to http://www.lua.org/ to find more about the Lua programming language. The reference
manual too is available online, at http://www.lua.org/manual/5.1/.

Note

Lua support is marked as experimental as the way the progamming interface may continue to
evolve while we are working for the best implementation style. Any user input into the program-
ming interface is appreciated.

SecRul eUpdat eActi onByl d
Description: Updates the action list of the specified rule.
Syntax: SecRul eRermoveByl d RULEI D ACTI ONLI ST
Example Usage: SecRul eUpdat eActi onByl d 12345 deny, st at us: 403
Processing Phase: Any
Scope: Any
Version: 2.5.0

Dependencies/Notes. This directive merges the specified action list with the rul€'s action list.
There are two limitations. The rule ID cannot be changed, nor can the phase. Further note that

38


http://www.lua.org/
http://www.lua.org/manual/5.1/

ModSecurity® Reference Manual

actions that may be specified multiple times are appended to the original.

SecAction \
"t:l owercase, phase: 2,i d: 12345, pass, nsg: ' The Message', | og, audi t| og"
SecRul eUpdat eActi onByld 12345 "t: conpr essWi t espace, deny, st atus: 403, nsg:' A new nmess

The example above will cause the rule to be executed asiif it was specified as follows:

SecAction \
"t:| owercase, phase: 2,i d: 12345, | og, audi t1 og, t: conpr essWi t espace, deny, st at us: 403, n

SecSer ver Si gnat ure

Description: Instructs ModSecurity to change the data presented in the "Server:" response
header token.

Syntax: SecSer ver Si gnat ure "WEB SERVER SOFTWARE"

Example Usage: SecSer ver Si gnat ure "Net scape-Enterprise/ 6. 0"
Processing Phase: N/A

Scope: Main

Version: 2.0.0

Dependencies/Notes: In order for this directive to work, you must set the Apache Server-
Tokens directive to Full. ModSecurity will overwrite the server signature data held in this
memory space with the data set in this directive. If ServerTokens is not set to Full, then the
memory space is most likely not large enough to hold the new data we are looking to insert.

SecTnpDir
Description: Configures the directory where temporary files will be created.
Syntax: SecTnpDir /path/to/dir
Example Usage: SecTnpDir /tnp
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes. Needs to be writable by the Apache user process. This is the directory
location where Apache will swap data to disk if it runs out of memory (more data than what
was specified in the SecRequestBodylnMemoryLimit directive) during inspection.

SecUpl oadDi r
Description: Configures the directory where intercepted files will be stored.
Syntax: SecUpl oadDir /path/to/dir
Example Usage: SecUpl oadDir /tnp

39



ModSecurity® Reference Manual

Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directory must be on the same filesystem as the temporary directory
defined with Sec TnpDi r . Thisdirective is used with SecUpl oadKeepFi | es.

SecUpl oadFi | eMbde

Description: Configures the mode (permissions) of any uploaded files using an octal mode (as
used in chmod).

Syntax: SecUpl oadFi | eMbde octal _node| "defaul t"

Example Usage: SecUpl oadFi | eMbde 0640

Processing Phase: N/A

Scope: Any

Version: 2.1.6

Dependencies/Notes: This feature is not available on operating systems not supporting octal
file modes. The default mode (0600) only grants read/write access to the account writing the
file. If access from another account is needed (using clamd is a good example), then this direct-
ive may be required. However, use this directive with caution to avoid exposing potentially
sensitive data to unauthorized users. Using the value "default” will revert back to the default
setting.

Note
The pr

ocess umask may still limit the mode if it is being more restrictive than the mode set using

this directive.

SecUpl oadKeepFi | es

Description: Configures whether or not the intercepted files will be kept after transaction is
processed.

Syntax: SecUpl oadKeepFil es On| O f | Rel evant Onl y

Example Usage: SecUpl oadKeepFi |l es On

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: This directive requires the storage directory to be defined (using Sec-
Upl oadDi r).

Possible values are:

e On - Keep uploaded files.

40



ModSecurity® Reference Manual

e O f - Donot keep uploaded files.

* Rel evant Onl y - Thiswill keep only those files that belong to requests that are deemed relev-
ant.

SecWebAppl d

Description: Creates a partition on the server that belongs to one web application.
Syntax: Sec\WebAppl d " NAME"

Example Usage: SecWebAppl d " WebAppl"

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes. Partitions are used to avoid collisions between session IDs and user IDs.
This directive must be used if there are multiple applications deployed on the same server. If it
isn't used, a collision between session IDs might occur. The default value is def aul t . Ex-
ample:

<Vi rtual Host *: 80>

Server Nane appl.com

Server Al i as www. appl. com

SecWebAppl d " Appl”

SecRul e REQUEST COXKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST_COCKI ES. PHPSESSI D}

</ Vi r t ual Host >

<Vi rtual Host *: 80>

Server Name app2.com

Server Al i as www. app2. com

Sec\WebAppl d " App2"

SecRul e REQUEST_COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST COCKI ES. PHPSESSI D}

</ Vi r t ual Host >

In the two examples configurations shown, SecWebAppld is being used in conjunction with
the Apache VirtualHost directives. What this achieves is to create more unique collection
names when being hosted on one server. Normally, when setsid is used, ModSecurity will cre-
ate a collection with the name "SESSION" and it will hold the value specified. With using
SecWebAppld as shown in the examples, however, the name of the collection would become
"Appl SESSION" and "App2_SESSION".

SecWebAppld isrelevant in two cases:

1. You are logging transactions/aerts to the ModSecurity Console and you want to use the web
application ID to search only the transactions belonging to that application.

41



ModSecurity® Reference Manual

2. You are using the data persistence facility (collections SESSION and USER) and you need to
avoid collisions between sessions and users belonging to different applications.

42



ModSecurity® Reference Manual

Processing Phases

ModSecurity 2.x allows rulesto be placed in one of the following five phases:

1. Request headers (REQUEST_HEADERS)
2. Request body (REQUEST_BCDY)
3.  Response headers (RESPONSE _HEADERS)
4. Response body (RESPONSE BODY)
5. Logging (LOGA NG
Below is a diagram of the standard Apache Request Cycle. In the diagram, the 5 ModSecurity
processing phases are shown.
* ModSecurity Phase:1
('ltllﬂ posl-reod-requesl Request Headers
_ URI translation
/ \
41
Header parsi
T parsing
, !
access control
.
ModSecurity Phase:5 llllﬁlel'kﬂﬁol
Logging l
avthorization
logging ’
R MIME type checking
r'd
. fixups ModSecurity Phase:2
o RESPONSE Request Body
v
ModSecurity Phase:4 D ModSecurity Phase:3
Response Body dowmem Response Headers
In order to select the phase a rule executes during, use the phase action either directly in the
rule or in using the SecDef aul t Act i on directive:
SecDef aul t Acti on "I og, pass, phase: 2"
SecRul e REQUEST HEADERS: Host "!~$" "deny, phase: 1"
Note

Keep in mind that rules are executed according to phases, so even if two rules are adjacent in a

43



ModSecurity® Reference Manual

configuration file, but are set to execute in different phases, they would not happen one after the
other. The order of rulesin the configuration file isimportant only within the rules of each phase.
Thisis especially important when using the ski p and ski pAft er actions.

Note

The LOGGE NG phase is specid. It is executed at the end of each transaction no matter what
happened in the previous phases. This means it will be processed even if the request was intercep-
ted or theal | ow action was used to pass the transaction through.

Phase Request Headers

Rules in this phase are processed immediately after Apache completes reading the request
headers (post-read-request phase). At this point the request body has not been read yet, mean-
ing not all request arguments are available. Rules should be placed in this phase if you need to
have them run early (before Apache does something with the request), to do something before
the request body has been read, determine whether or not the request body should be buffered,
or decide how you want the request body to be processed (e.g. whether to parse it as XML or
not).

Note

Rules in this phase can not leverage Apache scope directives (Directory, Location, Location-
Match, etc...) as the post-read-request hook does not have this information yet. The exception
here is the VirtuaHost directive. If you want to use ModSecurity rules inside Apache loca-
tions, then they should run in Phase 2. Refer to the Apache Request Cycle/ModSecurity Pro-
cessing Phases diagram.

Phase Request Body

This is the general-purpose input analysis phase. Most of the application-oriented rules should
go here. In this phase you are guaranteed to have received the request arguments (provided the
request body has been read). ModSecurity supports three encoding types for the request body
phase:

appl i cati on/ x- ww f or m ur | encoded - used to transfer form data
mul ti part/formdata - usedfor filetransfers
text/ xm - usedfor passing XML data

Other encodings are not used by most web applications.

Phase Response Headers

This phase takes place just before response headers are sent back to the client. Run here if you
want to observe the response before that happens, and if you want to use the response headers
to determine if you want to buffer the response body. Note that some response status codes

44



ModSecurity® Reference Manual

(such as 404) are handled earlier in the request cycle by Apache and my not be able to be
triggered as expected. Additionally, there are some response headers that are added by Apache
at alater hook (such as Date, Server and Connection) that we would not be able to trigger on or
sanitize. This should work appropriately in a proxy setup or within phase:5 (logging).

Phase Response Body

This is the genera-purpose output analysis phase. At this point you can run rules against the
response body (provided it was buffered, of course). This is the phase where you would want
to inspect the outbound HTML for information disclosure, error messages or failed authentica-
tion text.

Phase Logging

This phase is run just before logging takes place. The rules placed into this phase can only af-
fect how the logging is performed. This phase can be used to inspect the error messages logged
by Apache. You cannot deny/block connections in this phase as it is too late. This phase aso
allows for inspection of other response headers that weren't available during phase:3 or
phase:4. Note that you must be careful not to inherit a disruptive action into arulein this phase
asthisis a configuration error in ModSecurity 2.5.0 and later versions.

45



ModSecurity® Reference Manual

Variables

ARGS

The following variables are supported in ModSecurity 2.x:

ARGS is a collection and can be used on its own (means al arguments including the POST
Payload), with a static parameter (matches arguments with that name), or with a regular ex-
pression (matches all arguments with name that matches the regular expression). To look at
only the query string or body arguments, see the ARGS _CGET and ARGS_POST collections.
Some variables are actually collections, which are expanded into more variables at runtime.
The following example will examine all request arguments:

SecRul e ARGS dirty

Sometimes, however, you will want to look only at parts of a collection. This can be achieved
with the help of the selection operator(colon). The following example will only look at the ar-
guments named p (do note that, in general, requests can contain multiple arguments with the
same name):

SecRule ARGS:p dirty

It is also possible to specify exclusions. The following will examine all request arguments for
the word dirty, except the ones named z (again, there can be zero or more arguments named

Z):
SecRul e ARGS| ! ARGS: z dirty

There is a specia operator that allows you to count how many variables there are in a collec-
tion. The following rule will trigger if there is more than zero arguments in the request (ignore
the second parameter for the time being):

SecRul e &ARGS ! 0%

And sometimes you need to look at an array of parameters, each with a dlightly different name.
In this case you can specify aregular expression in the selection operator itself. The following
rule will look into all arguments whose names begin withi d_:

SecRule ARGS:/"id_/ dirty

Note

Using ARGS: p will not result in any invocations against the operator if argument p does not ex-

Ist.

46



ModSecurity® Reference Manual

In ModSecurity 1.X, the ARGS variable stood for QUERY_STRI NG+ POST_ PAYLQAD, whereas
now it expands to individual variables.

ARGS_COMBI NED_SI ZE

This variable allows you to set more targeted evaluations on the total size of the Arguments as
compared with normal Apache LimitRequest directives. For example, you could create a rule
to ensure that the total size of the argument data is below a certain threshold (to help prevent
buffer overflow issues). Example: Block request if the size of the arguments is above 25 char-
acters.

SecRul e REQUEST_FI LENAME "~/ cgi - bi n/ | ogi n\. php" \
"chai n, | og, deny, phase: 2,t: none, t: | owercase, t: normal i sePat h"
SecRul e ARGS_COMBI NED_SI ZE " @t 25"

ARGS NANES

Is a collection of the argument names. Y ou can search for specific argument names that you
want to block. In a positive policy scenario, you can also whitelist (using an inverted rule with
the ! character) only authorized argument names. Example: This example rule will only allow
2 argument names - p and a. If any other argument names are injected, it will be blocked.

SecRul e REQUEST FI LENAME "/ i ndex. php" \
"chai n, | og, deny, st at us: 403, phase: 2, t: none, t: | owercase, t: nor mal i sePat h"
SecRul e ARGS_NAMES "!~(p|la)$" "t:none,t:|owercase"

ARGS GET

ARGS_CET issimilar to ARGS, but only contains arguments from the query string.

ARGS GET NAMES

ARGS_GET_NAMES is similar to ARGS_NANMES, but only contains argument names from the
guery string.

ARGS_POST

ARGS POST issimilar to ARGS, but only contains arguments from the POST body.

ARGS_POST_NAMES

ARGS POST_NAMES issimilar to ARGS _NAMES, but only contains argument names from the
POST body.

47



ModSecurity® Reference Manual

AUTH_TYPE

This variable holds the authentication method used to validate a user. Example:

SecRul e AUTH TYPE "basi c" | og, deny, status: 403, phase: 1,t: | ower case

Note
This data will not be available in a proxy-mode deployment as the authentication is not local.

In a proxy-mode deployment, you would need to inspect the RE-
QUEST_HEADERS: Aut hori zat i on header.

Collection, requires a single parameter (after colon). The ENV variable is set with setenv and
does not give access to the CGI environment variables. Example:

SecRul e REQUEST_FI LENAME "pri ntenv" pass, setenv:tag=suspi ci ous

SecRul e ENV:tag "suspi ci ous”

Collection. Contains a collection of original file names (as they were caled on the remote
user's file system). Note: only available if files were extracted from the request body. Example:

SecRul e FILES "\.conf$" |og, deny, status: 403, phase: 2

FI LES_COVBI NED S| ZE

Single value. Total size of the uploaded files. Note: only available if files were extracted from
the request body. Example:

SecRul e FILES COVBI NED SI ZE "@t 1000" | og, deny, st at us: 403, phase: 2

FI LES NAMES

Collection w/o parameter. Contains a list of form fields that were used for file upload. Note:
only available if files were extracted from the request body. Example:

SecRul e FI LES_NAMES "~upfil e$" | og, deny, st atus: 403, phase: 2

FI LES_SI ZES

Collection. Contains a list of file sizes. Useful for implementing a size limitation on individual

48



ModSecurity® Reference Manual

uploaded files. Note: only available if files were extracted from the request body. Example:

SecRul e FILES SIZES "@t 100" | og, deny, st at us: 403, phase: 2

FI LES TMPNAMES

GEO

Collection. Contains a collection of temporary files names on the disk. Useful when used to-
gether with @ nspect Fi | e. Note: only available if files were extracted from the request
body. Example:

SecRul e FI LES TMPNAMES " @ nspectFil e /path/to/inspect_script.pl"

CGEOQis acollection populated by the results of the last @eoLookup operator. The collection
can be used to match geographical fields looked from an IP address or hostname.

Available since ModSecurity 2.5.0.
Fields:

COUNTRY_CODE: Two character country code. EX: US, GB, €tc.
COUNTRY_CODES: Up to three character country code.

COUNTRY_NAME: The full country name.

COUNTRY_CONTINENT: The two character continent that the country is located. EX: EU
REGION: The two character region. For US, thisis state. For Canada, providence, etc.
CITY: The city nameif supported by the database.

POSTAL_CODE: The posta code if supported by the database.

LATITUDE: Thelatitude if supported by the database.

LONGITUDE: The longitude if supported by the database.

DMA_CODE: The metropolitan area code if supported by the database. (US only)
AREA CODE: The phone system area code. (US only)

Example:

SecGeolLookupDb /usr/ | ocal / geo/ dat a/ GeoLiteCity. dat

SecRul e REMOTE_ADDR " @eolLookup" "chai n, drop, nsg: ' Non-GB | P address"'"
SecRul e GEO COUNTRY_CODE "! @treq GB"

H GHEST_SEVERI TY

This variable holds the highest severity of any rules that have matched so far. Severities are
numeric values and thus can be used with comparison operatorssuchas @'t , etc.

49



ModSecurity® Reference Manual

Note
Higher severities have alower numeric value.
A value of 255 indicates no severity has been set.

SecRul e HI GHEST _SEVERI TY "@e 2" "phase: 2, deny, st at us: 500, nsg: ' severity 9% H GHEST S

MATCHED VAR

This variable holds the value of the variable that was matched against. It is similar to the TX:0,

except it can be used for all operators and does not require that the capt ur e action be spe-
cified.

SecRul e ARGS pattern chain, deny

SecRul e MATCHED VAR "further scrutiny"

MATCHED VAR NANE

This variable holds the full name of the variable that was matched against.

SecRul e ARGS pattern setvar:tx. mymat ch=9%4 MATCHED VAR NANE}

SecRul e TX: MYMATCH " @qg ARGS: par ani deny

MODSEC_BUI LD

This variable holds the ModSecurity build number. This variable is intended to be used to

check the build number prior to using a feature that is available only in a certain build. Ex-
ample:

SecRul e MODSEC BUI LD "! @e 02050102" ski pAfter: 12345
SecRul e ARGS " @m sonme key words" id: 12345, deny, st at us: 500

MULTI PART _CRLF_LF LI NES

This flag variable will be set to 1 whenever a multi-part request uses mixed line terminators.
Themul ti part/form dat a RFC requires CRLF sequence to be used to terminate lines.
Since some client implementations use only LF to terminate lines you might want to allow
them to proceed under certain circumstances (if you want to do this you will need to stop using
MULTI PART_STRI CT_ERROR and check each multi-part flag variable individually, avoiding
MULTI PART_LF_ LI NE). However, mixing CRLF and LF line terminators is dangerous as it

50



ModSecurity® Reference Manual

can alow for evasion. Therefore, in such cases, you will have to add a check for MULTI -
PART _CRLF_LF_LI NES.

MULTI PART_STRI CT_ERRCR

MULTI PART_STRI CT_ERROR will be set to 1 when any of the following variables is also
set to 1: REQBODY_PROCESSOR_ERROR, MULTI PART_BOUNDARY_QUOTED, MULTI -
PART_BOUNDARY_WHI TESPACE, MULTI PART_DATA BEFORE, MULTI -
PART_DATA_AFTER, MULTI PART_HEADER FOLDI NG MULTI PART_LF_LI NE, MJL-
TI PART_SEM COLON_M SSI NG MULTI PART_I NVALI D_QUOTI NG. Each of these vari-
ables covers one unusua (although sometimes legal) aspect of the request body in mul ti -
part/formdata format.Your policiesshould always contain arule to check either this
variable (easier) or one or more individual variables (if you know exactly what you want to ac-
complish). Depending on the rate of false positives and your default policy you should decide
whether to block or just warn when the rule is triggered.

The best way to use this variable is as in the example below:

SecRul e MULTI PART_STRI CT_ERROR "! @qg 0" \
"phase: 2,t: none, | 0og, deny, nsg: ' Mul ti part request body \
failed strict validation: \

PE % REQBODY_ PROCESSOR ERROR}, \

BQ % MULTI PART_BOUNDARY QUOTED}, \

BW % MULTI PART_BOUNDARY_WH TESPACE}, \

DB % MULTI PART_DATA BEFORE}, \

DA % MULTI PART_DATA AFTER}, \

HF 9% MULTI PART_HEADER FOLDI NG, \

LF 9% MULTI PART_LF_ LI NE}, \

SM % MULTI PART_SEM COLON_M SSI NG, \

I Q % MULTI PART_| NVALI D_QUOTI NG " "

Therul ti part/form dat a parser was upgraded in ModSecurity v2.1.3 to actively look
for signs of evasion. Many variables (as listed above) were added to expose various facts dis-
covered during the parsing process. The MULTI PART_STRI CT_ERROR variable is handy to
check on al abnormalities at once. The individual variables allow detection to be fine-tuned
according to your circumstances in order to reduce the number of false positives. Detailed ana-
lysis of various evasion techniques covered will be released as a separated document at a later
date.

MULTI PART_UNVATCHED BOUNDARY

Set to 1 when, during the parsing phase of anul ti part/request - body, ModSecurity
encounters what feels like a boundary but it is not. Such an event may occur when evasion of
ModSecurity is attempted.

The best way to use this variable is asin the example below:

51



ModSecurity® Reference Manual

SecRul e MULTI PART_UNMATCHED BOUNDARY "! @q 0" \
"phase: 2,t: none, | og, deny, msg: ' Mul ti part parser detected a possible unmat ched bounda

Change the rule from blocking to logging-only if many false positives are encountered.

PATH_| NFO

Besides passing query information to a script/handler, you can aso pass additional data,
known as extra path information, as part of the URL. Example:

SecRul e PATH_I NFO "~/ (bi n| et c| sbi n| opt|usr)™"

QUERY_STRI NG

This variable holds form data passed to the script/handler by appending data after a question
mark. Warning: Not URL -decoded. Example:

SecRul e QUERY_STRI NG "at t ack"

REMOTE_ADDR

This variable holds the I P address of the remote client. Example:

SecRul e REMOTE_ADDR "~192\.168\.1\.101%"

REMOTE_HOST

If HostnamelL ookUps are set to On, then this variable will hold the DNS resolved remote host
name. If it is set to Off, then it will hold the remote IP address. Possible uses for this variable
would be to deny known bad client hosts or network blocks, or conversely, to allow in author-
ized hosts. Example:

SecRul e REMOTE_HOST "\.evil\. network\ or g$"

REMOTE_PORT

This variable holds information on the source port that the client used when initiating the con-
nection to our web server. Example: in this example, we are evaluating to see if the RE-
MOTE_PORT islessthan 1024, which would indicate that the user is a privileged user (root).

SecRul e REMOTE PORT "@t 1024" phase: 1,1 og, pass, setenv: renote_port=privil eged

52



ModSecurity® Reference Manual

REMOTE_USER

This variable holds the username of the authenticated user. If there are no password
(basic|digest) access controlsin place, then this variable will be empty. Example:

SecRul e REMOTE_USER "admi n"

Note
This datawill not be available in a proxy-mode deployment as the authentication is not local.

REQBODY_PROCESSOR

Built-in processors are URLENCODED, MULTI PART, and XM.. Example:

SecRul e REQBODY_ PROCESSOR "~XM.$ chain
SecRul e XM_ " @al i dat eDTD / opt / apache-frontend/ conf/xm . dtd"

REQBODY PROCESSOR ERRCR

Possible values are 0 (no error) or 1 (error). This variable will be set by request body pro-
cessors (typicaly the nul ti part/request - dat a parser or the XML parser) when they
fail to properly parse arequest payload.

Example:

SecRul e REQBODY_PROCESSCR_ERRCR " @q 1" deny, phase: 2

Note

Y our policies must have a rule to check REQBODY _PROCESSOR_ERROR at the beginning of
phase 2. Failure to do so will leave the door open for impedance mismatch attacks. It is possible,
for example, that a payload that cannot be parsed by ModSecurity can be successfully parsed by
more tolerant parser operating in the application. If your policy dictates blocking then you should
reject the request if error is detected. When operating in detection-only mode your rule should
alert with high severity when request body processing fails.

REQBODY PROCESSOR ERROR MBG

Empty, or contains the error message from the processor. Example:

SecRul e REQBODY_ PROCESSOR ERRCR MSG "failed to parse" t:lowercase

REQUEST _BASENANE

53



ModSecurity® Reference Manual

This variable holds just the filename part of REQUEST _FI LENAME (e.g. index.php).
Example:

SecRul e REQUEST_BASENAME "l ogi n\. php$" phase: 2,t: none, t: | owercase

Note

Please note that anti-evasion transformations are not applied to this variable by default. RE-
QUEST_BASENANE will recognise both/ and\ as path separators.

REQUEST BODY

This variable holds the data in the request body (including POST _PAYLQOAD data). RE-
QUEST _BODY should be used if the original order of the arguments is important (ARGS should
be used in all other cases). Example:

SecRul e REQUEST BODY "~user nanme=\w 25, }\ &asswor d=\ W 25, }\ &Subm t\ =l ogi n$"

Note

This variable is only available if the URLENCODED request body processor parsed a request
body. Thiswill occur by default when an appl i cati on/ x- ww f or m+ ur | encoded isde-
tected, or the URLENCODED request body parser is forced. As of 2.5.7 it is possible to force the
presence of the REQUEST_BODY variable, but only when there is no request body processor
defined, using the ct | : f or ceRequest BodyVar i abl e option in the REQUEST HEADERS
phase.

REQUEST COOKI ES

Thisvariable is a collection of all of the cookie data. Example: the following example is using
the Ampersand specia operator to count how many variables are in the collection. In thisrule,
it would trigger if the request does not include any Cookie headers.

SecRul e &REQUEST _COOKI ES " @q 0"

REQUEST_COOKI ES_NAMES

This variable is a collection of the cookie names in the request headers. Example: the follow-
ing rule will trigger if the JSESSIONID cookie is not present.

SecRul e &REQUEST_COCKI ES_NAMES: JSESSIONI D " @q 0"




ModSecurity® Reference Manual

REQUEST _FI LENAME

This variable holds the relative REQUEST URI minus the QUERY_STRI NG part (e.g. /
index.php). Example:

SecRul e REQUEST_FI LENAME "~/ cgi-bin/l ogi n\. php$" phase: 2,t: none, t: normal i sePat h

Note
Please note that anti-evasion transformations are not used on REQUEST _FI LENAME by default.

REQUEST _HEADERS

This variable can be used as either a collection of al of the request headers or can be used to
specify individual headers (by using REQUEST HEADERS:Header-Name). Example: the
first example uses REQUEST HEADERS as a collection and is applying the val i dat eUr -
| Encodi ng operator against all headers.

SecRul e REQUEST_ HEADERS " @al i dat eUr | Encodi ng"
Example: the second example is targeting only the Host header.

SecRul e REQUEST_HEADERS: Host "A[\d\.]+$" \
"deny, | og, st atus: 400, nsg: ' Host header is a nuneric |P address'"

REQUEST HEADERS NAMES

Thisvariableis acollection of the names of all of the request headers. Example:

SecRul e REQUEST_ HEADERS NAMES "“x-forwarded-for" \
"l og, deny, status: 403,t: | ower case, nsg: ' Proxy Server Used'"

REQUEST LI NE

This variable holds the complete request line sent to the server (including the RE-
QUEST_METHOD and HTTP version data). Example: this example rule will trigger if the re-
guest method is something other than GET, HEAD, POST or if the HTTP is something other
than HTTP/0.9, 1.0 or 1.1.

SecRul e REQUEST_LINE "! (~((?:(?: pos|ge)t|head))]|http/(0\.9]1\.0]1\.1)$)" t:none,t:|

REQUEST METHOD

55



ModSecurity® Reference Manual

This variable holds the request method used by the client.
The following example will trigger if the request method is either CONNECT or TRACE.

SecRul e REQUEST METHOD "~((?: connect|trace))$" t:none,t:|owercase

REQUEST PROTOCOL

This variable holds the request protocol version information. Example:

SecRul e REQUEST_PROTOCOL "!“http/ (0\.9]1\.0]1\.1)$" t:none,t: | owercase

REQUEST _UR

This variable holds the full URL including the QUERY_STRI NG data (e.g. /index.php?p=X),
however it will never contain a domain name, even if it was provided on the request line. It
a so does not include either the REQUEST _METHQOD or the HTTP version info.

Example:

SecRul e REQUEST _URI "attack" phase:1,t:none,t:url Decode,t: | owercase,t:nornmalisePath

Note
Please note that anti-evasion transformations are not used on REQUEST _URI by default.

REQUEST URI _RAW

Same as REQUEST _URI but will contain the domain name if it was provided on the request
line (e.g. http://www.example.com/index.php?p=X).
Example:

SecRul e REQUEST URI _RAW"http:/" phase: 1,t:none,t:url Decode,t: | owercase,t:normalise

Note
Please note that anti-evasion transformations are not used on REQUEST _URI _ RAWby default.

RESPONSE_BODY

This variable holds the data for the response payload.
Example:

SecRul e RESPONSE_BCDY " CDBC Error Code"

56



ModSecurity® Reference Manual

RESPONSE_CONTENT _LENGTH

Response body length in bytes. Can be available starting with phase 3 but it does not have to
be (as the length of response body is not always known in advance.) If the size is not known
this variable will contain a zero. If RESPONSE_CONTENT_LENGTH contains a zero in phase
5 that means the actual size of the response body was 0.

The value of this variable can change between phases if the body is modified. For example, in
embedded mode nod_def | at e can compress the response body between phases 4 and 5.

RESPONSE_CONTENT _TYPE

Response content type. Only available starting with phase 3.

RESPONSE_HEADERS

This variable is similar to the REQUEST_HEADERS variable and can be used in the same
manner. Example;

SecRul e RESPONSE_HEADERS: X- Cache "M SS"

Note

This variable may not have access to some headers when running in embedded-mode. Headers
such as Server, Date, Connection and Content-Type are added during a later Apache hook just
prior to sending the data to the client. This data should be available, however, either during
ModSecurity phase:5 (logging) or when running in proxy-mode.

RESPONSE  HEADERS NANMES
Thisvariableis acollection of the response header names. Example:

SecRul e RESPONSE_HEADERS_NAMES " Set - Cooki e"

Note

Same limitations as RESPONSE_HEADERS with regards to access to some headers in em-
bedded-mode.

RESPONSE PROTOCOL

This variable holds the HTTP response protocol information. Example:

SecRul e RESPONSE_PROTOCOL "~HTTP\/O\. 9"

RESPONSE_STATUS

57



ModSecurity® Reference Manual

This variable holds the HTTP response status code as generated by Apache. Example:

SecRul e RESPONSE_STATUS "A[ 45] "

Note

This directive may not work as expected in embedded-mode as Apache handles many of the
stock response codes (404, 401, etc...) earlier in Phase 2. This variable should work as expec-
ted in a proxy-mode deployment.

RULE

This variable provides access to the i d, rev, severity, | ogdat a, and nsg fields of the
rule that triggered the action. Only avalable for expansion in action strings
(egsetvar:tx.varnane=%rul e. i d}). Example:

SecRul e &REQUEST HEADERS: Host " @q 0" "l og, deny, setvar:tx. varname=%rul e.id}"

SCRI PT_BASENANE

Thisvariable holds just the local filename part of SCRIPT_FILENAME. Example:

SecRul e SCRI PT_BASENAME "l ogi n\. php$"

Note
Thisvariableis not available in proxy mode.

SCRI PT_FI LENANME

This variable holds the full path on the server to the requested script. (e.g. SCRIPT_NAME
plus the server path). Example:

SecRul e SCRI PT_FI LENAME "~/ usr/ | ocal / apache/ cgi - bi n/ | ogi n\. php$"

Note
Thisvariableis not available in proxy mode.

SCRI PT_G D

This variable holds the group id (numerical value) of the group owner of the script. Example:
SecRul e SCRIPT_G D "!"46%$"

Note
Thisvariableis not available in proxy mode.

58



ModSecurity® Reference Manual

SCRI PT_GROUPNANE

This variable holds the group name of the group owner of the script. Example:

SecRul e SCRI PT_GROUPNAME "! “apache$"

Note
Thisvariableis not available in proxy mode.

SCRI PT_MODE

This variable holds the script's permissions mode data (numerical - 1=execute, 2=write, 4=read
and 7=read/write/execute). Example: will trigger if the script has the WRITE permissions set.

SecRul e SCRI PT_MODE "~ (2| 3| 6] 7) $"

Note
Thisvariableis not available in proxy mode.

SCRI PT_UI D

This variable holds the user id (numerical value) of the owner of the script. Example: the ex-
ample rule below will trigger if the UID is not 46 (the Apache user).

SecRul e SCRIPT_U D "!~ 46%"

Note
Thisvariableis not available in proxy mode.

SCRI PT_USERNANME
This variable holds the username of the owner of the script. Example:

SecRul e SCRI PT_USERNAME "! “apache$"

Note
Thisvariableis not available in proxy mode.

SERVER_ADDR

This variable contains the | P address of the server. Example:

SecRul e SERVER ADDR "~192\.168\. 1\. 100$"

59



ModSecurity® Reference Manual

SERVER_NAME

This variable contains the server's hostname or 1P address. Example:

SecRul e SERVER NAME "host nane\ . con$"

Note
This datais taken from the Host header submitted in the client request.

SERVER_PORT

This variable contains the local port that the web server is listening on. Example:

SecRul e SERVER PORT "~80%"

SESSI ON

This variable is a collection, available only after set si d is executed. Example: the following
example shows how to initialize a SESSION collection with setsid, how to use setvar to in-
crease the session.score values, how to set the session.blocked variable and finally how to deny
the connection based on the session:blocked value.

SecRul e REQUEST COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST_COCKI ES. PHPSESSI D}
SecRul e REQUEST URI "~/cgi-bin/finger$" \
"phase: 2,t:none, t: | owercase, t: normalisePath, pass, | og, setvar: sessi on. scor e=+10"
SecRul e SESSI ON: SCORE "@t 50" "pass, | og, setvar: session. bl ocked=1"
SecRul e SESSI ON: BLOCKED " @q 1" "Il og, deny, st at us: 403"

SESSI ONI D

Thisvariable isthe value set with set si d. Example:

SecRul e SESSI ONI D !'*$ chai n, nol og, pass
SecRul e REQUEST_COOKI ES: PHPSESSI D ! 7$
SecAction setsi d: %4 REQUEST_COCKI ES. PHPSESSI D}

T ME

This variable holds aformatted string representing the time (hour:minute:second). Example:

SecRule TIME "~(([1](8]9))]([2](011]2]3))):\d{2}:\d{2}$"

60



ModSecurity® Reference Manual

TI ME_DAY

This variable holds the current date (1-31). Example: this rule would trigger anytime between
the 10th and 20th days of the month.

SecRul e TIME_DAY "~(([1] (0] 1| 2| 3| 4|5| 6] 7| 8|9))]| 20)$"

TI ME_EPOCH

This variable holds the time in seconds since 1970. Example:

SecRul e TI ME_EPOCH " @t 1000"

TI ME_HOUR

This variable holds the current hour (0-23). Example: this rule would trigger during "off
hours'.

SecRul e TIME_HOUR "~(0| 1] 2| 3| 4] 5] 6/ [1] (8] 9)|[2] (0] 1] 2| 3)) $"

TIME M N

This variable holds the current minute (0-59). Example: this rule would trigger during the last
half hour of every hour.

SecRule TIME_M N "~(3]|4|5)"

TI ME_MON

This variable holds the current month (0-11). Example: this rule would match if the month was
either November (10) or December (11).

SecRul e TI ME_MON "~1"

TI ME_SEC

This variable holds the current second count (0-59). Example:

SecRul e TIME_SEC "@t 30"

TI ME_WDAY

61



ModSecurity® Reference Manual

This variable holds the current weekday (0-6). Example: this rule would trigger only on week-
ends (Saturday and Sunday).

SecRul e TI ME_WDAY "~( 0| 6) $"

TI ME_YEAR

This variable holds the current four-digit year data. Example:

SecRul e TI ME_YEAR "~2006%"

X

Transaction Collection. Thisis used to store pieces of data, create a transaction anomaly score,
and so on. Transaction variables are set for 1 request/response cycle. The scoring and evalu-
ation will not last past the current request/response process. Example: In this example, we are
using setvar to increase the tx.score value by 5 points. We then have a follow-up run that will
evaluate the transactional score this request and then it will decided whether or not to allow/
deny the request through.

Thefollowing isalist of reserved namesin the TX collection:

* TX: 0 - The matching value when using the @ x or @moperator with the capt ur e action.

e TX 1-TX: 9 - The captured subexpression value when using the @ x operator with capturing
parens and the capt ur e action.

SecRul e WEBSERVER _ERROR LOG "does not exist" "phase:5, pass, setvar:tx.score=+5"
SecRul e TX: SCORE " @t 20" deny, | og

USERI D

Thisvariableisthe value set with set ui d. Example:

SecActi on set ui d: 94 REMOTE_USER} , nol og
SecRul e USERI D " Admi n"

VEEBAPPI D

Thisvariableisthe value set with SecWebAppl d. Example:

SecWebAppl d " WebAppl"
SecRul e VEEBAPPI D "WebAppl" "chain, | og, deny, st at us: 403"
SecRul e REQUEST HEADERS: Tr ansf er - Encodi ng "! %"

62



ModSecurity® Reference Manual

WEBSERVER ERROR LOG

Contains zero or more error messages produced by the web server. Access to this variableisin
phase:5 (logging). Example:

SecRul e WEBSERVER _ERROR LOG "Fil e does not exist" "phase:5, setvar:tx.score=+5"

XM

Can be used standalone (as a target for val i dat eDTD and val i dat eSchena) or with an
XPath expression parameter (which makes it a valid target for any function that accepts plain
text). Example using X Path:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1,t: 1 ower case, nol og, pass, ctl: request BodyProcessor =XM
SecRul e REQBODY_PROCESSOR "!AXM.$" ski pAfter: 12345
SecRul e XM_: / enpl oyees/ enpl oyee/ nane/text () Fred
SecRul e XM_:/ xq: enpl oyees/ enpl oyee/ name/text () Fred \
i d: 12345, xm ns: xq=htt p: / / ww. exanpl e. conf enpl oyees

The first XPath expression does not use namespaces. It would match against payload such as
this one:

<enpl oyees>
<enpl oyee>

<nane>Fred Jones</ nanme>

<addr ess | ocati on="hone" >
<street >900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>WA</ st at e>
<zi p>98115</ zi p>

</ addr ess>

<address | ocati on="work">
<street>2011 152nd Avenue NE</street>
<ci ty>Rednond</ci ty>
<st at e>WA</ st at e>
<zi p>98052</ zi p>

</ addr ess>

<phone | ocati on="wor k" >(425) 555- 5665</ phone>

<phone | ocati on="hone" >(206) 555- 5555</ phone>

<phone | ocati on="nobi | e">(206) 555- 4321</ phone>

</ enpl oyee>
</ enpl oyees>

The second XPath expression does use namespaces. It would match the following payload:

<xq: enpl oyees xm ns: xg="htt p: //ww. exanpl e. com enpl oyees" >

63



ModSecurity® Reference Manual

<enpl oyee>
<nanme>Fred Jones</ nane>
<address | ocati on="hone" >
<street >900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>\WA</ st at e>
<zi p>98115</ zi p>
</ addr ess>
<addr ess | ocati on="wor k" >
<street >2011 152nd Avenue NE</street>
<ci ty>Rednond</ci ty>
<st at e>\WA</ st at e>
<zi p>98052</ zi p>
</ addr ess>
<phone | ocati on="wor k" >(425) 555- 5665</ phone>
<phone | ocati on="hone" >(206) 555- 5555</ phone>
<phone | ocati on="nobi | e">(206) 555- 4321</ phone>
</ enpl oyee>
</ xq: enpl oyees>

Note the different namespace used in the second example.

To learn more about X Path we suggest the following resources:

XPath Standard [http://www.w3.0rg/TR/xpath]
XPath Tutorial [http://www.zvon.org/xxI/X PathTutorial/General/exampl es.html]



http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

ModSecurity® Reference Manual

Transformation functions

When ModSecurity receives request or response information, it makes a copy of this data and
places it into memory. It is on this data in memory that transformation functions are applied.
The raw request/response data is never altered. Transformation functions are used to transform
avariable before testing it in arule.

Note

There are no default transformation functions as there were in previous versions of ModSecur-
ity.

The following rule will ensure that an attacker does not use mixed case in order to evade the
ModSecurity rule:

SecRul e ARGS: p "xp_crdshel I " "t: | owercase"

multiple transformation actions can be used in the same rule, for example the following rule
aso ensures that an attacker does not use URL encoding (%xx encoding) for evasion. Note the
order of the transformation functions, which ensures that a URL encoded letter is first decoded
and than translated to lower case.

SecRul e ARGS: p "xp_crdshel I™ "t:url Decode, t: | owercase”

One can use the SecDefaultAction command to ensure the trandation occurs for every rule un-
til the next. Note that transformation actions are additive, so if arule explicitly list actions, the
translation actions set by SecDefaultAction are still performed.

SecDefaul t Action t:url Decode, t:| owercase

The following transformation functions are supported:

base64Decode

This function decodes a base64-encoded string.

base64Encode
This function encodes input string using base64 encoding.

conpr ess\Wi t espace

It converts whitespace characters (32, \f, \t, \n, \r, \v, 160) to spaces (ASCII 32) and then com-
presses multiple consecutive space characters into one.

cssDecode

65



ModSecurity® Reference Manual

Decodes CSS-encoded characters, as specified at ht-
tp://www.w3.0org/ TR/REC-CSS2/syndata.html. This function uses only up to two bytes in the
decoding process, meaning it is useful to uncover ASCII characters (that wouldn't normally be
encoded) encoded using CSS encoding, or to counter evasion which is a combination of a
backslash and non-hexadecimal characters (e.g. j a\ vascri pt is equivalent to j avas-
cript).

escapeSeqDecode

This function decode ANSI C escape sequences: \a, \b,\f,\n,\r, \t,\v,\\ \?2\",
\'",\ xHH (hexadecimal), \ 0000 (octal). Invalid encodings are left in the output.

hexDecode

This function decodes a hex-encoded string.

hexEncode

This function encodes input as hex-encoded string.

ht M Enti t yDecode

This function decodes HTML entities present in input. The following variants are supported:
o &#xHHand &#xHH; (whereH isany hexadecimal number)
e &#DDD and &#DDD; (where D isany decima number)
e &quot and &quot ;
e &nbsp and &nbsp;
e &ltand&t;
o &gt and &gt ;
This function will convert any entity into a single byte only, possibly resulting in aloss of in-

formation. It isthus useful to uncover bytes that would otherwise not need to be encoded, but it
cannot do anything with the characters from the range above 255.

] sDecode

Decodes JavaScript escape sequences. If a\ uHHHH code is in the range of FFO1-FF5E (the
full width ASCII codes), then the higher byte is used to detect and adjust the lower byte. Oth-
erwise, only the lower byte will be used and the higher byte zeroed.

| engt h

This function converts the input to its numeric length (count of bytes).

66


http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/syndata.html

ModSecurity® Reference Manual

| ower case

This function converts all charactersto lowercase using the current C locale.

md5

This function calculates an MD5 hash from input. Note that the computed hash isin araw bin-
ary form and may need encoded into text to be usable (for example: t : md5, t : hexEncode).

none

Not an actual transformation function, but an instruction to ModSecurity to remove all trans-
formation functions associated with the current rule.

nor nal | sePat h

This function will remove multiple slashes, self-references and directory back-references
(except when they are at the beginning of the input).

nor mal i sePat hW n
Same as nor mal i sePat h, but will first convert backslash characters to forward slashes.

parityEven7bit

This function calculates even parity of 7-bit data replacing the 8th bit of each target byte with
the calculated parity bit.

parityQOdd7bit
This function calculates odd parity of 7-bit data replacing the 8th bit of each target byte with
the calcul ated parity bit.

parityZero7bit

This function calculates zero parity of 7-bit data replacing the 8th bit of each target byte with a
zero parity bit which allows inspection of even/odd parity 7bit data as ASCII7 data.

renoveNul | s

This function removes NULL bytes from input.

renoveWhi t espace

This function removes all whitespace characters from inpuit.

67



ModSecurity® Reference Manual

repl aceConmment s

This function replaces each occurrence of a C-style comments (/ * ... */) with asingle
space (multiple consecutive occurrences of a space will not be compressed). Unterminated
comments will too be replaced with a space (ASCII 32). However, a standal one termination of
acomment (*/ ) will not be acted upon.

repl aceNul I's
Thisfunction is enabled by default. It replaces NULL bytesin input with spaces (ASCII 32).

ur | Decode

This function decodes an URL-encoded input string. Invalid encodings (i.e. the ones that use
non-hexadecimal characters, or the ones that are at the end of string and have one or two char-
acters missing) will not be converted. If you want to detect invalid encodings use the
@al i dat eUr | Encodi ng operator. The transformation function should not be used against
variables that have already been URL-decoded unless it is your intention to perform URL de-
coding twice!

ur | DecodeUni

In addition to decoding % x likeur | Decode, url DecodeUni aso decodes %uXXXX en-
coding. If the code isin the range of FFO1-FF5E (the full width ASCII codes), then the higher
byte is used to detect and adjust the lower byte. Otherwise, only the lower byte will be used
and the higher byte zeroed.

ur |l Encode

This function encodes input using URL encoding.

shal

This function calculates a SHA 1 hash from input. Note that the computed hash isin araw bin-
ary form and may need encoded to be usable (for example: t : shal, t : hexEncode).

trinmLeft

This function removes whitespace from the | eft side of input.

trinRi ght

This function removes whitespace from the right side of inpui.

trim

68



ModSecurity® Reference Manual

This function removes whitespace from both the left and right sides of input.

69



ModSecurity® Reference Manual

Actions

Each action belongs to one of five groups:

Disruptive actions Cause ModSecurity to do something. In many cases something

means block transaction, but not in all. For example, the allow
action is classified as a disruptive action, but it does the opposite
of blocking. There can only be one disruptive action per rule (if
there are multiple disruptive actions present, or inherited, only
the last one will take effect), or rule chain (in a chain, a disrupt-
ive action can only appear in thefirst rule).

Non-disruptive actions Do something, but that something does not and cannot affect the

rule processing flow. Setting a variable, or changing its value is
an example of a non-disruptive action. Non-disruptive action can
appear in any rule, including each rule belonging to a chain.

Flow actions These actions affect the rule flow (for example skip or
ski pAfter).
Meta-data actions Meta-data actions are used to provide more information about

rules. Examplesincludei d, rev, severity andnsg.

Data actions Not really actions, these are mere containers that hold data used

by other actions. For example, the st at us action holds the
status that will be used for blocking (if it takes place).

al | ow

Description: Stops rule processing on a successful match and allows the transaction to pro-
ceed.

Action Group: Disruptive

Example:

SecRul e REMOTE_ADDR "7192\. 168\. 1\. 100%$" nol og, phase: 1, al | ow

Prior to ModSecurity 2.5 the al | ow action would only affect the current phase. An al | owin
phase 1 would skip processing the remaining rules in phase 1 but the rules from phase 2 would
execute. Starting with v2.5.0 al | ow was enhanced to allow for fine-grained control of what is
done. The following rules now apply:

If used one its own, like in the example above, al | ow will affect the entire transaction, stop-
ping processing of the current phase but also skipping over all other phases apart from the log-
ging phase. (The logging phase is special; it is designed to always execute.)

If used with parameter "phase’, al | ow will cause the engine to stop processing the current
phase. Other phases will continue as normal.

70



ModSecurity® Reference Manual

3. If used with parameter "request”, al | ow will cause the engine to stop processing the current
phase. The next phase to be processed will be phase RESPONSE _HEADERS.

Examples:

# Do not process request but process response.
SecActi on phase: 1, al | ow r equest

# Do not process transaction (request and response).
SecActi on phase: 1, all ow

If you want to allow a response through, put a rule in phase RESPONSE_HEADERS and
simply useal | owonits own:

# Al ow response through.
SecActi on phase: 3, al | ow

append

Description: Appends text given as parameter to the end of response body. For this action to
work content injection must be enabled by setting SecCont ent | nj ecti on to On. Also
make sure you check the content type of the response before you make changes to it (e.g. you
don't want to inject stuff into images).

Action Group: Non-disruptive
Processing Phases: 3 and 4.
Example:

SecRul e RESPONSE_CONTENT_TYPE "~text/htm " "nol og, pass, append: ' <hr >Footer' "

Note

While macro expansion is allowed in the additional content, you are strongly cautioned against
inserting user defined data fields.

audi t | og

Description: Marks the transaction for logging in the audit log.
Action Group: Non-disruptive
Example:

SecRul e REMOTE_ADDR "~192\.168\. 1\. 100%$" audi tl og, phase: 1, al | ow

Note
The auditlog action is now explicit if log is already specified.

71



ModSecurity® Reference Manual

bl ock

Description: Performs the default disruptive action.

Action Group: Disruptive

It is intended to be used by ruleset writers to signify that the rule was intended to block and
leaves the "how" up to the administrator. This action is currently a placeholder which will just
be replaced by the action from the last SecDef aul t Act i on in the same context. Using the
bl ock action with the SecRul eUpdat eAct i onByl d directive allows arule to be reverted
back to the previous SecDef aul t Act i on disruptive action.

In future versions of ModSecurity, more control and functionality will be added to define
"how" to block.

Examples:

In the following example, the second rule will "deny" because of the SecDefaultAction dis-
ruptive action. The intent being that the administrator could easily change this to another dis-
ruptive action without editing the actua rules.

### Adm nistrator defines "how' to block (deny, status:403)...
SecDef aul t Acti on phase: 2, deny, st at us: 403, | og, audi t | og

### Included froma rulest...

# Intent is to warn for this User Agent

SecRul e REQUEST HEADERS: User - Agent "perl" "phase: 2, pass, nsg: ' Perl based user agent
# Intent is to block for this User Agent, "how' described in SecDefault Action
SecRul e REQUEST_HEADERS: User - Agent "ni kt 0" "phase: 2, bl ock, nsg: ' Ni kt 0 Scanners | dent

In the following example, The rule is reverted back to the pass action defined in the SecDe-
faultAction directive by using the SecRul eUpdat eAct i onByl d directive in conjuction
with the bl ock action. This allows an administrator to override an action in a 3rd party rule
without modifying the rule itself.

### Admi ni strator defines "how' to bl ock (deny, status:403)...
SecDef aul t Acti on phase: 2, pass, | og, audi t| og

### I ncluded froma rulest...
SecRul e REQUEST_HEADERS: User - Agent "ni kt 0" "id: 1, phase: 2, deny, nsg: ' Ni kt o Scanners |

### Added by the adm ni strator
SecRul eUpdat eActionByld 1 "bl ock"

capt ure

Description: When used together with the regular expression operator, capture action will cre-
ate copies of regular expression captures and place them into the transaction variable collec-
tion. Up to ten captures will be copied on a successful pattern match, each with a name consist-

72



ModSecurity® Reference Manual

ing of adigit from0to 9.
Action Group: Non-disruptive
Example:

SecRul e REQUEST_BODY "~usernanme=(\w{25,})" phase: 2, capture,t:none, chain
SecRule TX:1 "(?:(?:a(dm n| nonynous)))"

Note
The 0 data captures the entire REGEX match and 1 captures the datain the first parens, etc...

chai n

Description: Chains the rule where the action is placed with the rule that immediately follows
it. The result is called arule chain. Chained rules allow for more complex rule matches where
you want to use a number of different VARIABLES to create a better rule and to help prevent
false positives.

Action Group: Flow

Example:

# Refuse to accept POST requests that do

# not specify request body |ength. Do note that

# this rule should be preceeded by a rule that verifies

# only valid request nethods (e.g. GET, HEAD and POST) are used.
SecRul e REQUEST METHOD ~POST$ chai n,t: none

SecRul e REQUEST_ HEADERS: Cont ent-Length ~$ t: none

Note

In programming language concepts, think of chained rules somewhat similar to AND conditional
statements. The actions specified in the first portion of the chained rule will only be triggered if
al of the variable checks return positive hits. If one aspect of the chained rule is negative, then
the entire rule chain is negative. Also note that disruptive actions, execution phases, metadata ac-
tions (id, rev, msg), skip and skipAfter actions can only be specified on by the chain starter rule.

ctl
Description: The ctl action allows configuration options to be updated for the transaction.
Action Group: Non-disruptive
Example:

# Parse requests with Content-Type "text/xm" as XM
SecRul e REQUEST_CONTENT_TYPE ~text/xm nol og, pass, ctl : request BodyPr ocessor =XM

Note

73



ModSecurity® Reference Manual

The following configuration options are supported:

audi t Engi ne

audi t LogParts

debuglLogLevel

rul eRenoveByl d (singlerule D, or asinglerule ID range accepted as parameter)
request BodyAccess

f or ceRequest BodyVari abl e

request BodyLi mi t

request BodyPr ocessor

© © N o g b~ wDNPRE

responseBodyAccess

=
o

responseBodyLi mit

IR
[N

. rul eEngi ne

With the exception of r equest BodyPr ocessor and f or ceRequest BodyVari abl e,
each configuration option corresponds to one configuration directive and the usage isidentical.
Ther equest BodyPr ocessor option alows you to configure the request body processor.
By default ModSecurity will use the URLENCODED and MULTI PART processors to process
anappl i cati on/ x-wwwform url encoded andanul ti part/form dat a bodies,
respectively. A third processor, XM, is also supported, but it is never used implicitly. Instead
you must tell ModSecurity to use it by placing a few rules in the REQUEST _HEADERS pro-
cessing phase. After the request body was processed as XML you will be able to use the XML-
related features to inspect it.

Request body processors will not interrupt a transaction if an error occurs during parsing. In-
stead they will set variables REQBODY_PROCESSOR ERROR and  RE-
BODY_PROCESSCR_ERROR _MSG. These variables should be inspected in the RE-
QUEST_BODY phase and an appropriate action taken.

The f or ceRequest BodyVar i abl e option alows you to configure the REQUEST BODY
variable to be set when there is no request body processor configured. This allows for inspec-
tion of request bodies of unknown types.

deny
Description: Stops rule processing and intercepts transaction.
Action Group: Disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "ni kto" "I og, deny, nsg: ' Ni kt o Scanners |dentified

depr ecat evar

74



ModSecurity® Reference Manual

Description: Decrement counter based on its age.
Action Group: Non-Disruptive
Example: The following example will decrement the counter by 60 every 300 seconds.

SecActi on deprecat evar: sessi on. scor e=60/ 300

Note
Counter values are aways positive, meaning the value will never go below zero.

drop

Description: Immediately initiate a " connection close" action to tear down the TCP connection
by sending a FIN packet.

Action Group: Disruptive

Example: The following example initiates an IP collection for tracking Basic Authentication
attempts. If the client goes over the threshold of more than 25 attempts in 2 minutes, it will
DROP subsequent connections.

SecActi on phase: 1,initcol:ip=% REMOTE_ADDR}, nol og
SecRul e ARGS:login "!"$" \

nol og, phase: 1, setvar:ip. auth_attenpt =+1, deprecat evar:i p. aut h_att enpt =20/ 120
SecRul e | P: AUTH ATTEMPT " @t 25" \

"l og, dr op, phase: 1, nsg: ' Possi bl e Brute Force Attack'"

Note

This action is currently not available on Windows based builds. This action is extremely useful
when responding to both Brute Force and Denia of Service attacks in that, in both cases, you
want to minimize both the network bandwidth and the data returned to the client. This action
causes error message to appear in the log "(9)Bad file descriptor: core_output_filter: writing
data to the network"

exec

Description: Executes an external script/binary supplied as parameter. As of v2.5.0, if the
parameter supplied to exec isaluascript (detected by the . | ua extension) the script will be
processed internally. This means you will get direct access to the internal request context from
the script. Please read the SecRul eScri pt documentation for more details on how to write
Luascripts.

Action Group: Non-disruptive
Example:

# The following is going to execute /usr/local/apache/bin/test.sh
# as a shell script on rule match.
SecRul e REQUEST _URI "~/cgi-bin/script\.pl" \

75



ModSecurity® Reference Manual

"phase: 2,t:none, t: | owercase, t:normalisePath, | og, exec:/usr/local/apache/ bin/test

# The following is going to process /usr/l|ocal/apache/conf/exec.| ua
# internally as a Lua script on rule match.
SecRul e ARGS: p attack | og, exec:/usr/ | ocal /apache/ conf/exec. | ua

Note

The exec action is executed independently from any disruptive actions. External scripts will al-
ways be called with no parameters. Some transaction information will be placed in environment
variables. All the usual CGI environment variables will be there. Y ou should be aware that fork-
ing a threaded process results in al threads being replicated in the new process. Forking can
therefore incur larger overhead in multi-threaded operation. The script you execute must write
something (anything) to stdout. If it doesn't ModSecurity will assume execution didn't work.

expi revar
Description: Configures a collection variable to expire after the given time in seconds.
Action Group: Non-disruptive
Example:

SecRul e REQUEST_COOKI ES: JSESSIONI D "! ~$" nol og, phase: 1, pass, chai n
SecActi on setsi d: %4 REQUEST_COCKI ES: JSESSI ONI D}
SecRul e REQUEST_URI "~/ cgi-bin/script\.pl" \
"phase: 2,t: none, t: | owercase, t: normalisePath, | og, al | ow, \
set var: sessi on. suspi ci ous=1, expi r evar: sessi on. suspi ci ous=3600, phase: 1"

Note

Y ou should use expirevar actions at the same time that you use setvar actions in order to keep
the indented expiration time. If they are used on their own (perhaps in a SecAction directive)
the expire time could get re-set. When variables are removed from collections, and there are no
other changes, collections are not written to disk at the end of request. Thisis because the vari-
ables can aways be expired again when the collection is read again on a subsequent request.

| d
Description: Assignsaunique ID to the rule or chain.
Action Group: Meta-data
Example:

SecRul e &REQUEST HEADERS: Host " @q 0" \
"l og, id: 60008, severity: 2, nsg: ' Request M ssing a Host Header'"™

76



ModSecurity® Reference Manual

Note

These are the reserved ranges:
1-99,999; reserved for local (internal) use. Use as you see fit but do not use this range for rules
that are distributed to others.

100,000-199,999; reserved for internal use of the engine, to assign to rules that do not have ex-
plicit IDs.

200,000-299,999; reserved for rules published at modsecurity.org.

300,000-399,999; reserved for rules published at gotroot.com.

400,000-419,999; unused (available for reservation).

420,000-429,999; reserved for ScallyWhack [http://projects.otakud2.de/wiki/ScallyWhack].
430,000-899,999; unused (available for reservation).

900,000-999,999; reserved for the Core Rules [http://www.modsecurity.org/projects/rules/]
project.

1,000,000 and above; unused (available for reservation).

| nitcol

Description: Initialises a named persistent collection, either by loading data from storage or by
creating anew collection in memory.

Action Group: Non-disruptive
Example: The following example initiates | P address tracking.

SecAction phase: 1,initcol:ip=%REMOTE_ADDR}, nol og

Note

Normally you will want to use phase:1 along with initcol so that the collection is available in
al phases.

Collections are loaded into memory when the initcol action is encountered. The collection in
storage will be persisted (and the appropriate counters increased) only if it was changed during
transaction processing.

See the "Persistant Storage” section for further details.

Description: Indicates that a successful match of the rule needs to be logged.
Action Group: Non-disruptive
Example:

SecActi on phase: 1,initcol:ip=% REMOTE_ADDR}, | og

Note

77


http://projects.otaku42.de/wiki/ScallyWhack
http://www.modsecurity.org/projects/rules/

ModSecurity® Reference Manual

This action will log matches to the Apache error log file and the ModSecurity audit log.

| ogdat a

Description: Allows a datafragment to be logged as part of the alert message.
Action Group: Non-disruptive
Example:

SecRul e &ARGS: p "@qg 0" "l og, | ogdata: ' %4 TX 0}"'"

Note

The logdata information appears in the error and/or audit log files and is not sent back to the
client in response headers. Macro expansion is preformed so you may use variable names such
as %{ TX.0}, etc. Theinformation is properly escaped for use with logging binary data.

nsg
Description: Assigns acustom message to the rule or chain.
Action Group: Meta-data
Example:
SecRul e &REQUEST HEADERS: Host " @q 0" \
"l og, id: 60008, severity: 2, nsg: ' Request M ssing a Host Header'"
Note
The msg information appears in the error and/or audit log files and is not sent back to the client
in response headers.
mul ti Mat ch

Description: If enabled ModSecurity will perform multiple operator invocations for every tar-
get, before and after every anti-evasion transformation is performed.

Action Group: Non-disruptive
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e ARGS "attack" multiMtch

Note

Normally, variables are evaluated once, only after all transformation functions have completed.
With multiMatch, variables are checked against the operator before and after every transforma-
tion function that changes the input.

78



ModSecurity® Reference Manual

noaudi t | og

Description: Indicates that a successful match of the rule should not be used as criteria whether
the transaction should be logged to the audit log.

Action Group: Non-disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" all ow, noaudit| og

Note

If the SecAuditEngine is set to On, all of the transactions will be logged. If it is set to Relevan-
tOnly, then you can control it with the noauditlog action. Even if the noauditlog action is ap-
plied to a specific rule and a rule either before or after triggered an audit event, then the trans-
action will be logged to the audit log. The correct way to disable audit logging for the entire
transactionistousect | : audi t Engi ne=CF f "

nol og

pass

Description: Prevents rule matches from appearing in both the error and audit logs.
Action Group: Non-disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" al | ow, nol og

Note
The nolog action also implies noauditlog.

Description: Continues processing with the next rule in spite of a successful match.
Action Group: Disruptive
Examplel:

SecRul e REQUEST_ HEADERS: User - Agent "Test" | og, pass

When using pass with SecRule with multiple targets, all targets will be processed and all non-
disruptive actions will trigger for every match found. In the second example the TX:test target
would be incremented by 1 for each matching argument.

Example2:
SecRul e ARGS "test" |og, pass, setvar: TX test=+1

Note

79



ModSecurity® Reference Manual

The transaction will not be interrupted but a log will be generated for each matching target
(unless logging has been suppressed).

pause
Description: Pauses transaction processing for the specified number of milliseconds.
Action Group: Non-disruptive
Example:

SecRul e REQUEST_HEADERS: User - Agent "Test" | og, deny, st at us: 403, pause: 5000

Note

This feature can be of limited benefit for slowing down Brute Force Scanners, however use
with care. If you are under a Denial of Service type of attack, the pause feature may make mat-
tersworse as this feature will cause child processes to sit idle until the pause is completed.

phase
Description: Placesthe rule (or the rule chain) into one of five available processing phases.
Action Group: Meta-data
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e REQUEST HEADERS: User - Agent "Test" | og, deny, st at us: 403

Note

Keep in mind that is you specify the incorrect phase, the target variable that you specify may
be empty. This could lead to a false negative situation where your variable and operator
(RegEx) may be correct, but it misses malicious data because you specified the wrong phase.

prepend
Description: Prepends text given as parameter to the response body. For this action to work
content injection must be enabled by setting SecCont ent | nj ecti on to On. Also make
sure you check the content type of the response before you make changes to it (e.g. you don't
want to inject stuff into images).
Action Group: Non-disruptive
Processing Phases: 3 and 4.
Example:

SecRul e RESPONSE _CONTENT_TYPE “text/htm "phase: 3, nol og, pass, prepend: ' Header <br>'"

80



ModSecurity® Reference Manual

Note
While macro expansion is allowed in the additional content, you are strongly cautioned against
inserting user defined datafields.

pr oxy
Description: Intercepts transaction by forwarding request to another web server using the
proxy backend.
Action Group: Disruptive
Example:

SecRul e REQUEST_HEADERS: User - Agent "Test" | og, proxy: http://ww. honeypot host. com

Note

For this action to work, mod_proxy must also be installed. This action is useful if you would
like to proxy matching requests onto a honeypot webserver.

redirect
Description: Intercepts transaction by issuing aredirect to the given location.
Action Group: Disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" \
| og, redirect: http://ww. host name. coni f ai | ed. ht n

Note

If the st at us action is present and its value is acceptable (301, 302, 303, or 307) it will be
used for the redirection. Otherwise status code 302 will be used.

rev

Description: Specifies rule revision.
Action Group: Meta-data
Example:

SecRul e REQUEST_METHOD "APUT$" "id: 340002, rev: 1, severity: 2, nsg: "' Restricted HTTP fun

Note

This action is used in combination with the i d action to allow the same rule ID to be used after
changes take place but to still provide some indication the rule changed.

81



ModSecurity® Reference Manual

sanitiseArg
Description: Sanitises (replaces each byte with an asterisk) a named request argument prior to
audit logging.
Action Group: Non-disruptive
Example:

SecActi on nol og, phase: 2, sani ti seArg: password

Note

The sanitize actions do not sanitize any data within the actual raw requests but only on the
copy of data within memory that is set to log to the audit log. It will not sanitize the datain the
modsec_debug.log file (if the log level is set high enough to capture this data).

sani ti seMat ched

Description: Sanitises the variable (request argument, request header, or response header) that
caused arule match.

Action Group: Non-disruptive

Example: This action can be used to sanitise arbitrary transaction elements when they match a
condition. For example, the example below will sanitise any argument that contains the word
password in the name.

SecRul e ARGS_NAMES passwor d nol og, pass, saniti seMat ched

Note
Same note as sanitiseArg.

sani ti seRequest Header

Description: Sanitises a named request header.
Action Group: Non-disruptive
Example: Thiswill sanitise the datain the Authorization header.

SecActi on | og, phase: 1, sani ti seRequest Header : Aut hori zati on
Note

Same note as sanitiseArg.

sani ti seResponseHeader

Description: Sanitises a named response header.
Action Group: Non-disruptive

82



ModSecurity® Reference Manual

Example: Thiswill sanitise the Set-Cookie data sent to the client.

SecActi on | og, phase: 3, sani ti seResponseHeader : Set - Cooki e

Note
Same note as sanitiseArg.

severity
Description: Assigns severity to theruleit is placed with.
Action Group: Meta-data
Example:

SecRul e REQUEST_METHOD "APUTS$" "id: 340002, rev: 1, severity: CRITI CAL, msg: ' Restricted F

Note
Severity valuesin ModSecurity follow those of syslog, as below:
* 0- EMERGENCY
e 1-ALERT
« 2-CRITICAL
+ 3-ERROR
 4-WARNING
« 5-NOTICE
« 6-INFO
« 7-DEBUG
It is possible to specify severity levels using either the numerical values or the text values. You

should always specify severity levels using the text values. The use of the numerical valuesis
deprecated (as of v2.5.0) and may be removed in one of the susequent major updates.

setuid
Description: Special-purpose action that initialises the USER collection.
Action Group: Non-disruptive
Example:

SecActi on set ui d: % REMOTE_USER}, nol og

Note

After initialisation takes place the variable USERI D will be available for use in the subsequent
rules.

83



ModSecurity® Reference Manual

setsid
Description: Special-purpose action that initialises the SESSI ON collection.
Action Group: Non-disruptive
Example:

# Initialise session variables using the session cookie val ue
SecRul e REQUEST COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST _COCKI ES. PHPSESSI D}

Note

On first invocation of this action the collection will be empty (not taking the predefined vari-
ablesinto account - seei ni t col for more information). On subsequent invocations the con-
tents of the collection (session, in this case) will be retrieved from storage. After initialisation
takes place the variable SESSI ONI D will be available for use in the subsequent rules.This ac-
tion understands each application maintains its own set of sessions. It will utilise the current
web application ID to create a session namespace.

setenv
Description: Creates, removes, or updates an environment variable.
Action Group: Non-disruptive
Examples:
To create anew variable (if you omit the value 1 will be used):

set env: nane=val ue

To remove avariable:

set env: ! nane

Note
This action can be used to establish communication with other Apache modules.

setvar
Description: Creates, removes, or updates a variable in the specified collection.
Action Group: Non-disruptive
Examples:
To create anew variable:

setvar:tx.score=10

To remove avariable prefix the name with exclamation mark:

84



ModSecurity® Reference Manual

skip

setvar:!tx.score

To increase or decrease variable value use + and - charactersin front of anumerical vaue:

setvar:.tx.score=+5

Description: Skips one or more rules (or chains) on successful match.
Action Group: Flow
Example:

SecRul e REQUEST _URI "~/ $" \
"phase: 2, chai n, t: none, ski p: 2"
SecRul e REMOTE_ADDR "~127\.0\.0\.1%$" "chain"
SecRul e REQUEST HEADERS: User - Agent "“Apache \ (i nternal dummy connection\)$" "t:none
SecRul e &REQUEST HEADERS: Host " @q 0" \

"deny, | og, st at us: 400, i d: 960008, severity: 4, nsg: ' Request M ssing a Host Header'"
SecRul e &REQUEST_HEADERS: Accept " @q 0" \

"l og, deny, | og, st at us: 400, i d: 960015, nsg: ' Request M ssi ng an Accept Header'"

Note

Skip only applies to the current processing phase and not necessarily the order in which the
rules appear in the configuration file. If you group rules by processing phases, then skip should
work as expected. This action can not be used to skip rules within one chain. Accepts asingle
parameter denoting the number of rules (or chains) to skip.

ski pAfter

Description: Skips rules (or chains) on successful match resuming rule execution after the spe-
cified rule ID or marker (see SecMar ker ) isfound.

Action Group: Flow
Example:

SecRul e REQUEST _URI "~/ $" "chain, t: none, ski pAfter:960015"
SecRul e REMOTE_ADDR "~127\.0\.0\.1$" "chain"
SecRul e REQUEST_HEADERS: User - Agent "“Apache \ (internal dummy connection\)$" "t:none
SecRul e &REQUEST_HEADERS: Host "@q 0" \

"deny, | og, status: 400, i d: 960008, severity: 4, msg: ' Request M ssing a Host Header'"
SecRul e &REQUEST HEADERS: Accept "@qg 0" \

"l og, deny, | og, st at us: 400, i d: 960015, nsg: ' Request M ssing an Accept Header'"

Note
Ski pAfter only applies to the current processing phase and not necessarily the order in

85



ModSecurity® Reference Manual

which the rules appear in the configuration file. If you group rules by processing phases, then
skip should work as expected. This action can not be used to skip rules within one chain. Ac-
cepts a single parameter denoting the last rule ID to skip.

st at us
Description: Specifies the response status code to use with actions deny and r edi r ect .
Action Group: Data
Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 1

Note

Status actions defined in Apache scope locations (such as Directory, Location, etc...) may be
superseded by phase:1 action settings. The Apache ErrorDocument directive will be triggered
if present in the configuration. Therefore if you have previously defined a custom error page
for agiven status then it will be executed and its output presented to the user.

Description: This action can be used which transformation function should be used against the
specified variables before they (or the results, rather) are run against the operator specified in
therule.

Action Group: Non-disruptive
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e REQUEST_COCKI ES: SESSI ONI D "47414e81chbbef 3cf 8366e84eeacha091" \
| og, deny, status: 403, t: nd5, t: hexEncode

Note

Any transformation functions that you specify in a SecRule will be in addition to previous ones
specified in SecDefaultAction. Use of "t:none” will remove all transformation functions for the
specified rule.

t ag
Description: Assigns custom text to arule or chain.
Action Group: Meta-data
Example:

SecRul e REQUEST_FI LENAME "\ b(?: n(?: map|et|c)|w ?: guest|sh)|cnd(?:32)?|tel net|rcnd|f
"t:none, t: | owercase, deny, nsg: ' System Command Access',id:' 950002',\
tag:' WEB_ATTACK/ FI LE_I NJECTI ON , t ag: ' OMSP/ A2' | severity:'2""

86



ModSecurity® Reference Manual

Note

The tag information appears in the error and/or audit log files. Its intent is to be used to auto-
mate classification of rules and the alerts generated by rules. Multiple tags can be used per

rule/chain.

xm ns
Description: This action should be used together with an XPath expression to register a
namespace.

Action Group: Data
Example:

SecRul e REQUEST_ HEADERS: Cont ent - Type "text/xm " \
"phase: 1, pass, ctl: request BodyProcessor =XM., ct| : request BodyAccess=0On, \
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"

SecRul e XM.:/soap: Envel ope/ soap: Body/ ql: getl nput/id() "123" phase: 2, deny

87



ModSecurity® Reference Manual

Operators

A number of operators can be used in rules, as documented below. The operator syntax uses

the @symbol followed by the specific operator name.

begi nsWth

Description: This operator is a string comparison and returns true if the parameter value is
found at the beginning of the input. Macro expansion is performed so you may use variable
namessuchas % TX. 1}, etc.

Example:

SecRul e REQUEST LI NE "! @egi nsWth CGET" t:none, deny, status: 403
SecRul e REQUEST_ADDR "~(.*)\.\d+$" deny, status: 403, capture, chain
SecRul e ARGS: gw "! @egi nsWth % TX 1}"

cont ai ns

Description: This operator is a string comparison and returns true if the parameter value is
found anywhere in the input. Macro expansion is performed so you may use variable names
such as %{ TX.1}, etc.

Example:

SecRul e REQUEST LI NE "! @ontai ns . php" t:none, deny, status: 403
SecRul e REQUEST_ADDR "~(.*)$" deny, status: 403, capture, chain
SecRule ARGS:ip "!@ontains % TX 1}"

endsWth

eq

Description: This operator is a string comparison and returns true if the parameter value is
found at the end of the input. Macro expansion is performed so you may use variable names
such as %{ TX.1}, etc.

Example:

SecRul e REQUEST _LINE "! @ndsWth HTTP/ 1. 1" t:none, deny, status: 403
SecRul e ARGS:route "! @ndsWth % REQUEST _ADDR}" t:none, deny, st atus: 403

Description: This operator is a humerical comparison and stands for "equal to."
Example:

SecRul e &REQUEST HEADERS_NAMES " @q 15"

88



ModSecurity® Reference Manual

ge

Description: This operator is a numerical comparison and stands for "greater than or equal to."

Example:

SecRul e &REQUEST_HEADERS_NAMES " @e 15"

geoLookup
Description: This operator looks up various data fields from an IP address or hostname in the
target data. The results will be captured in the GEO collection.
Y ou must provide a database via Sec GeoLookupDb before this operator can be used.

Note

This operator matches and the action is executed on a successful lookup. For this reason, you
probably want to use the pass,nolog actions. This alows for set var and other non-disruptive
actions to be executed on a match. If you wish to block on afailed lookup, then do something like
this (look for an empty GEO collection):

SecGeolLookupDb /usr/| ocal / geo/ dat a/ GeoLiteCity. dat

SecRul e REMOTE_ADDR " @eoLookup" "pass, nol og"
SecRul e &GEO "@q 0" "deny, status: 403, nsg: ' Failed to | ookup I P "

See the GEOvariable for an example and more information on various fields available.

gt

Description: This operator is anhumerical comparison and stands for "greater than."
Example:

SecRul e &REQUEST_HEADERS_NAMES " @t 15"

| nspectFile
Description: Executes the external script/binary given as parameter to the operator against
every file extracted from the request. As of v2.5.0, if the supplied filename is not absolute it is
treated as relative to the directory in which the configuration file resides. Also as of v2.5.0, if
the filename is determined to be a Lua script (based on its extension) the script will be pro-
cessed by the internal engine. As such it will have full access to the ModSecurity context.

Example of using an external binary/script:

# Execute external script to validate uploaded files.

89



ModSecurity® Reference Manual

| e

| t

pm

SecRul e FI LES TMPNAMES " @ nspect Fi |l e / opt/ apache/ bi n/inspect_script.pl"
Example of using Lua script:

SecRul e FI LES TMPNANMES " @ nspect Fil e i nspect. | ua"

Scripti nspect . | ua:

function main(fil enane)
-- Do sonething to the file to verify it. In this exanple, we
-- read up to 10 characters fromthe begi nning of the file.

local f = io.open(filenane, "rb");

local d = f:read(10);

f:close();

-- Return null if there is no reason to believe there is ansything

-- wong with the file (no match). Returning any text will be taken
-- to nmean a natch should be trigerred.
return null;

end

Description: This operator is anhumerical comparison and stands for "less than or equal to."
Example:

SecRul e &REQUEST HEADERS NAMES "@e 15"

Description: This operator isanumerical comparison and stands for "less than."
Example:

SecRul e &REQUEST_HEADERS_NAMES "@t 15"

Description: Phrase Match operator. This operator uses a set based matching engine
(Aho-Corasick) for faster matches of keyword lists. It will match any one of its arguments any-
where in the target value. The match is case insensitive.

Example:

SecRul e REQUEST_ HEADERS: User - Agent " @m WebZl P WebCopi er Webster WebStri pper

90

Si t eSn



ModSecurity® Reference Manual

The above would deny access with 403 if any of the words matched within the User-Agent
HTTP header value.

pnfFronfi | e

r bl

X

Description: Phrase Match operator. This operator uses a set based matching engine
(Aho-Corasick) for faster matches of keyword lists. This operator is the same as @m except
that it takes alist of files as arguments. It will match any one of the phrases listed in the file(s)
anywhere in the target value.

Notes:
The contents of the files should be one phrase per line. End of line markers will be stripped

from the phrases, however, whitespace will not be trimmed from phrases in the file. Empty
lines and comment lines (beginning with a'#) are ignored.

To alow easier inclusion of phrase files with rulesets, relative paths may be used to the phrase
files. In this case, the path of the file containing the ruleis prepended to the phrase file path.

Example:
SecRul e REQUEST_HEADERS: User - Agent " @m / pat h/to/ bl acklist1l bl acklist2"

The above would deny access with 403 if any of the patterns in the two files matched within
the User-Agent HTTP header value. The bl ackl i st 2 file would need to be placed in the
same path as the file containing the rule.

Description: Look up the parameter in the RBL given as parameter. Parameter can be an IPv4
address, or a hostname.

Example:

SecRul e REMOTE_ADDR " @ bl sc. surbl . org"

Description: Regular expression operator. Thisisthe default operator, so if the"@" operator is
not defined, it is assumed to be rx.

Example:
SecRul e REQUEST HEADERS: User - Agent " @ x ni kt 0"

Note

Regular expressions are handled by the PCRE library (http://www.pcre.org). ModSecurity
compilesits regular expressions with the following settings:

91

"deny, statu


http://www.pcre.org

ModSecurity® Reference Manual

The entire input istreated as a single line, even when there are newline characters present.

All matches are case-sensitive. If you do not care about case sensitivity you either need to im-
plement the | ower case transformation function, or use the per-pattern( ?i ) modifier, as al-
lowed by PCRE.

3. The PCRE_DOTALL and PCRE_DOLLAR ENDONLY flags are set during compilation, mean-
ing a single dot will match any character, including the newlines and a $ end anchor will not
match atrailing newline character.

streq

Description: This operator is a string comparison and returns true if the parameter value
matches the input exactly. Macro expansion is performed so you may use variable names such
as %{TX.1}, etc.

Example:

SecRul e ARGS:foo "! @treq bar" t:none, deny, st atus: 403
SecRul e REQUEST _ADDR "~(.*)$" deny, status: 403, capture, chain
SecRul e REQUEST_HEADERS: | p- Address "! @treq %4 TX 1}"

val | dat eByt eRange

Description: Validates the byte range used in the variable falls into the specified range.
Example:

SecRul e ARGS: text " @alidateByteRange 10, 13, 32-126"

Note

Y ou can force requests to consist only of bytes from a certain byte range. This can be useful to
avoid stack overflow attacks (since they usualy contain "random" binary content). Default
range values are 0 and 255, i.e. al byte values are allowed. This directive does not check byte
range in a POST payload when mul ti part/for m dat a encoding (file upload) is used.
Doing so would prevent binary files from being uploaded. However, after the parameters are
extracted from such request they are checked for avalid range.

validateByteRange is similar to the ModSecurity 1.X SecFilterForceByteRange Directive
however since it works in arule context, it has the following differences:

Y ou can specify adifferent range for different variables.
It hasan "event" context (id, msg....)
It is executed in the flow of rules rather than being a built in pre-check.

val i dat eDTD

Description: Validates the DOM tree generated by the XML request body processor against

92



ModSecurity® Reference Manual

the supplied DTD.
Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1, t: | ower case, nol og, pass, ctl : request BodyPr ocessor =XM.
SecRul e REQBODY_PROCESSOR "!AXM.$" nol og, pass, ski pAfter: 12345
SecRul e XML " @al i dat eDTD / pat h/ t o/ apache2/ conf/xm . dtd" "deny,id: 12345"

Note
This operator requires request body to be processed as XML.

val i dat eSchema

Description: Validates the DOM tree generated by the XML request body processor against
the supplied XML Schema.

Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1, t: | ower case, nol og, pass, ctl : request BodyPr ocessor =XM.
SecRul e REQBODY_PROCESSOR "!AXM.$" nol og, pass, ski pAfter: 12345
SecRul e XML " @al i dat eSchena / pat h/t o/ apache2/ conf/xm . xsd" "deny, i d: 12345"

Note
This operator requires request body to be processed as XML.

val i dat elUr | Encodi ng

Description: Verifiesthe encodings used in the variable (if any) are valid.
Example:

SecRul e ARGS " @al i dat eUr| Encodi ng"

Note

URL encoding is an HTTP standard for encoding byte values within a URL. The byte is es-
caped with a % followed by two hexadecimal values (0-F). This directive does not check en-
coding in a POST payload when the nul ti part/form dat a encoding (file upload) is
used. It is not necessary to do so because URL encoding is not used for this encoding.

val i dat eUt f 8Encodi ng

93



ModSecurity® Reference Manual

Description: Verifiesthe variableis avalid UTF-8 encoded string.
Example:

SecRul e ARGS " @al i dat eUt f 8Encodi ng"

Note

UTF-8 encoding is valid on most web servers. Integer values between 0-65535 are encoded in
a UTF-8 byte sequence that is escaped by percents. The short form istwo bytesin length.
check for three types of errors:

* Not enough bytes. UTF-8 supports two, three, four, five, and six byte encodings. ModSecurity
will locate cases when a byte or more is missing.

* Invaid encoding. The two most significant bits in most characters are supposed to be fixed to
0x80. Attackers can use this to subvert Unicode decoders.

* Overlong characters. ASCII characters are mapped directly into the Unicode space and are thus
represented with a single byte. However, most ASCII characters can also be encoded with two,
three, four, five, and six characters thus tricking the decoder into thinking that the character is
something else (and, presumably, avoiding the security check).

veri fyCC
Description: This operator verifies a given regular expression as a potential credit card num-

ber. It first matches with a single generic regular expression then runs the resulting match
through a Luhn checksum algorithm to further verify it as a potential credit card number.

Example:

SecRul e ARGS "@erifyCC \d{13, 16}" \
"phase: 2, sani ti seMat ched, | og, audi t| og, pass, nsg: ' Potential credit card

Wit hin
Description: This operator is a string comparison and returns true if the input value is found
anywhere within the parameter value. Note that thisis similar to @ ont ai ns, except that the
target and match values are reversed. Macro expansion is performed so you may use variable
names such as %{ TX.1}, etc.

Example:
SecRul e REQUEST METHOD "! @ni t hi n get, post, head" t:| owercase, deny, st at us: 403

SecActi on "pass, setvar:'tx.all owed_net hods=get, post, head""
SecRul e REQUEST METHOD "! @i thin %tx. al | owed_net hods}" t: | owercase, deny, st atus: 403

94



ModSecurity® Reference Manual

Macro Expansion

Macros alow for using place holders in rules that will be expanded out to their values at
runtime. Currently only variable expansion is supported, however more options may be added
in future versions of ModSecurity.

Format:

9% VAR ABLE}
9% COLLECTI ON. VARI ABLE}

Macro expansion can be used in actions such as initcol, setsid, setuid, setvar, setenv, logdata.
Operators that are evaluated at runtime support expansion and are noted above. Such operators
include @beginsWith, @endswith, @contains, @within and @streg. You cannot use macro
expansion for operators that are "compiled” such as @pm, @rx, etc. as these operators have
their values fixed at configure time for efficiency.

Some values you may want to expand include: TX, REMOTE _ADDR, USERID,
HIGHEST_SEVERITY, MATCHED_VAR, MATCHED_VAR_NAME, MULTI-
PART_STRICT_ERROR, RULE, SESSION, USERID, among others.

95



ModSecurity® Reference Manual

Persistant Storage

a b~ 0w NP

At thistime it is only possible to have three collections in which data is stored persistantly (i.e.
data available to multiple requests). These are: | P, SESSI ON and USER.

Every collection contains several built-in variables that are available and are read-only unless
otherwise specified:

CREATE_TI ME - date/time of the creation of the collection.

I S NEW- set to 1 if the collection is new (not yet persisted) otherwise set to 0.

KEY - the value of theinitcol variable (the client's P address in the example).
LAST_UPDATE_TI ME - date/time of the last update to the collection.

TI MEQUT - date/time in seconds when the collection will be updated on disk from memory (if
no other updates occur). This variable may be set if you wish to specifiy an explicit expiration
time (default is 3600 seconds).

UPDATE_COUNTER - how many times the collection has been updated since creation.

UPDATE_RATE - isthe average rate updates per minute since creation.
To create a collection to hold session variables (SESSI ON) use action set si d. To create a

collection to hold user variables (USER) use action set ui d. To create a collection to hold cli-
ent address variables (I P) use actioni ni t col .

Note

ModSecurity implements atomic updates of persistent variables only for integer variables
(counters) at thistime. Variables are read from storage whenever i ni t col isencountered in the
rules and persisted at the end of request processing. Counters are adjusted by applying a delta
generated by re-reading the persisted data just before being persisted. This keeps counter data
consistent even if the counter was modified and persisted by another thread/process during the
transaction.

Note

ModSecurity uses a Berkley Database (SDBM) for persistant storage. This type of database is
generally limited to storing a maximum of 1008 bytes per key. This may be alimitation if you are
attempting to store a considerable amount of datain variables for asingle key. Some of this limit-
ation is planned to be reduced in a future version of ModSecurity.

96



ModSecurity® Reference Manual

Miscellaneous Topics

Impedance Mismatch

Web application firewalls have a difficult job trying to make sense of data that passes by,
without any knowledge of the application and its business logic. The protection they provide
comes from having an independent layer of security on the outside. Because data validation is
done twice, security can be increased without having to touch the application. In some cases,
however, the fact that everything is done twice brings problems. Problems can arise in the
areas where the communication protocols are not well specified, or where either the device or
the application do things that are not in the specification. In such cases it may be possible to
design payload that will be interpreted in one way by one device and in another by the other
device. This problem is better known as Impedance Mismatch. It can be exploited to evade the
security devices.

While we will continue to enhance ModSecurity to deal with various evasion techniques the
problem can only be minimized, but never solved. With so many different application backend
chances are some will always do something completely unexpected. The only solution is to be
aware of the technologies in the backend when writing rules, adapting the rules to remove the
mismatch. See the next section for some examples.

PHP Peculiarities for ModSecurity Users
When writing rules to protect PHP applications you need to pay attention to the following
facts:

1. When"register_globals' is set to "On" request parameters are automatically converted to script
variables. In some PHP versionsit is even possible to override the SGLOBALS array.

2. Whitespace at the beginning of parameter names is ignored. (Thisis very dangerous if you are
writing rulesto target specific named variables.)

3. Theremaining whitespace (in parameter names) is converted to underscores. The same applies
todotsand to a"[" if the variable name does not contain a matching closing bracket. (Meaning
that if you want to exploit a script through a variable that contains an underscore in the name
you can send a parameter with a whitespace or a dot instead.)

Cookies can be treated as request parameters.
The discussion about variable names applies equally to the cookie names.

6. The order in which parameters are taken from the request and the environment is EGPCS
(environment, GET, POST, Cookies, built-in variables). This means that a POST parameter
will overwrite the parameters transported on the request line (in QUERY _STRING).

7. When "magic_quotes gpc" is set to "On" PHP will use backslash to escape the following char-
acters: single quote, double quote, backslash, and the nul byte.

8. If "magic_quotes sybase" is set to "On" only the single quote will be escaped using another

97



ModSecurity® Reference Manual

single quote. In this case the "magic_quotes gpc" setting becomes irrelevant. The "ma-
gic_quotes sybase" setting completely overrides the "magic_quotes _gpc" behaviour but "ma-
gic_quotes gpc" still must be set to "On" for the Sybase-specific quoting to be work.

PHP will also automatically create nested arrays for you. For example "p[x][y]=1" resultsin a
total of three variables.

98



