Specification of the Exim Mall
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2011 University of Cambridge
Revision 4.76 06 May 2011

Contents

I [o o 18 od 1] o H TP PP PP PPTPPPPIN 1.
1.1 EXIiM dOCUMENTALIONuiiiiiiiiiieiiiiiie ettt e et e e e e s r e e e e e e e e e e aeeeas 1.
1.2 FTP ANd WED SITES ...ttt e e e e e e e eaeeeas 2.
1.3 MAITING TISTS ..eeeeeeeie ettt e e e e e e e e e e e e e e b e e e e e e e e e aan 2.,
1.4 EXIM TFAINING ©.tttiiiieeeiiiittee et et e e e e e r e e e e e e e s e e et e e e e e e b be e e e e e e e e e e annnnrneeeaeeeas 1 T
R =10 [=] o] 12T I UUPT
1.6 Where to find the EXim diStriDULION ... 3.
A 01 = L0 PP PP PP PPPPPPPPPPP 3o
1.8 RUN tiIME CONFIQUIATION ...ttt e e e e e el 4......
1.9 CalliNG INTEITACEeeiiiiieeiiei ettt e e e e e e e e e e nnnens A........
1.20 TEIMUNOIOTY .eteeeiieeeiiiiitt ettt e e e e e et e e e e e e et e e e e e e e e e s e e e e aeeeas 4.

A [g Tt] g oTo] = 11=To [oloTo [P PP PP PPPPPPPPPP PPN B.........

3. How Exim receives and delivers mail ... 8.....
3.1 Overall PhilOSOPNYeeiiiiieiii e e e 8.
3.2 PONCY CONTION ...ttt e e e e e e e e e e e 8.........
R B U =] o {11 (=] £ ST PP PPPPPPPPPPPY 8.
3.4 Message identifiCatiONueeiiiiiiiiiie e 9......
3.5 RECEIVING MAII ...t e e e e e e (o N
3.6 Handling an iNCOMING MESSATEcveeeiiiiiiiiiiiieeeee ittt e e e e e e a e e e e e aibbrereeeeeeeaa 10....
3.7 Life Of @ MESSAGE ...ceeieiiiiiiie ettt e ettt e e e e e e e e 10......
3.8 Processing an address for delIVETY ... 11..

3.9 Processing an address for VErifiCatioNcooooiiiiiiiiiieee e 12..
3.10 Running an individual FTOULETooiiiiiiiiiiiiiiiiee e 12....
3.11 DUPICAE AUUINESSESeiiiiiiiieeee ittt e e e e e e e e e e e e 13.....
3.12 ROULET PrECONTITIONS ...eeiiiieeiiiiiiiiie it e e e ettt e e e e e e e e e e et e e e e e s e e e aeeeeas 13.....
3.13 DeliVery iN detallooiuiiiiiieiee e 14......
3.14 REtry MECNANISITuiiiiiiiiiiiiiei ettt e e et e e e e e e e e e e e e e e 15......
3.15 Temporary delivery failure ... 15....
3.16 Permanent delivery failUre ... 15....
3.17 Failures to deliver DOUNCE MESSAGESccceeiiiiiiiiiiiiieeee it 16...

4. Building and installing EXIM ..o 17....
4.1 UNPACKING .ttt e e ettt e e e e e et e e e e e e e e e e e e e e e e n e 17.......
4.2 Multiple machine architectures and operating SYStemSccoeeevriiiiiiieieeeennniiienee. 17
4.3 PCRE TDIATY ..ottt e e et e e e nab e e e enaeeas 17.......
4.4 DBM lIBIAIIES ...cooiieieieiieee ettt e e e e e e 17.......
4.5 Pre-building CONfIQUIALIONcoiiiiiiiiiiiiiiee e 18.....
4.6 SUPPOIT TOF ICONV() ueeeteeieieeeeeeeit ittt e e e et e e e e e st e e e e e e e nnreeeeeeeans 19......
4.7 Including TLS/SSL enCryption SUPPOITuvvirieeeeiiiiiiiiieeeeeeaaiiire e e e e e e e e e 19..

4.8 USE OF LCPWIBPPELS ..eeeieiieeeiiaiitiee et e e e e e ettt e e e e s e st ettt e e e e e e s r e e e e e e e e annbrnneeeeeeeaanns 20......
4.9 Including SUPPOIT FOr IPVGooeiiiiiiiiieiee e 20.....
4.10 Dynamically loaded lookup module SUPPOITeviiiiiiiiiiiiiiieeee e 21.
4.11 The DUIIAING PIrOCESSiiiiiiiiieeiiiie ettt e e e e e 21.....
4.12 OULPUL FTOM “MEAKE”eeiiiiiiiiieitii ittt e e e e e e e e e e e e e r e e e e e e e aaa 21.....
4.13 Overriding build-time optioNs fOr EXIMoooiiiiiiiiiiiiiiee e 21..
4.14 OS-SpeCific NEAdEr flESeeiieiiiie e 23.....
4.15 Overriding build-time options for the Monitorcccoveeiiiiii e 23.
4.16 Installing Exim binaries and SCrPLSccuuviiiiiiiiiiiie e 23...
4.17 Installing iNfo dOCUMENTALIONoiiiiiiiiiiiiiie e e 25....
4.18 Setting up the SPOOI QIFECLONYcieiiiiiiiiiiiiie e 25....

I T == 1 o 25........

4.20 Replacing another MTA With EXIMeeuieiiiiiiiiieeeeeeeeeeeeeeee e 26...
4.21 Upgrading EXIMcooooiiiee s 26......
4.22 Stopping the Exim daemon 0N SOIArIScooovvivviiiiiiiiiiiii 27..

. The EXim command liNE ... 28.....
5.1 Setting options DY Program NAIMEcouiiiiiiiiiiiiii e 28...
5.2 Trusted and adMin USEIScooiiiiiiiiiiiiiiie et e e e e e e e e e 28.....
5.3 Command lIN€ OPLIONScoooiiiiiiii e 29.....

. The Exim run time configuration file ... s 50...
6.1 Using a different configuration file ... 50...
6.2 Configuration file fOrmatoooviiiiiiii h1.....
6.3 File inclusions in the configuration file ... 52..
6.4 Macros in the configuration file ..o b2...
6.5 MACIO SUDSHEIULION ... e e 52......
6.6 RedefiniNg MACIOS ...ccoo i 53......
6.7 Overriding MACIO VAIUEBScooiiiieieeeee e 53.....
ORI e T g o [0 il = Tod €0 U ES7= o = PR 53.....
6.9 Conditional skips in the configuration fileeuiiiiiiiiiiiiieeeeeeeeee h3..
6.10 ComMMON OPLION SYNLAX .oeieeeeiieeieee e 54.....
LS00 I = To To] [=7= T g o] o 1o g =R 5.
B.12 INTEOET VAlUBS ...ttt et s e e e e e e e e e e e e e eees 54......
6.13 OcCtal INTEGET VAIUES ...ttt s s e e e e eeeeeeeeeees 54.....
L = To o To T 1o 018 0] 1= TP 55.....
6.15 TIME INTEIVAISeeiiiiiiee e e e e e e e e e e 55......
LI IS] 1o IR = 10T SRR 55.......
6.17 EXpanded StriNGS ...ccooiiiiiieeee e 55......
6.18 User and groUp NAIMESccoeiiieieeee e 56.....
6.19 LISt CONSIIUCTION ...eviiiiiiiiiiee ettt e e e e et e e e s e e e e e e e e e 56......
6.20 Changing liSt SEPArALOrScoeiiiiiiiiiiiiiii e 56.....
6.21 EmPpty itemMS iN lISES .oooeeiiieeiieeeeee e 56......
6.22 Format of driver configurations ... 51....

. The default configuration file ... e 59....
7.1 Main configuration SETHNGS ...ttt eeeeee e eeeeeeeeeeeeeeeeeeees 59....
A N O I oo T oo 18] = [0 [P 61......
7.3 Router CoNfigUIatioNcoooiiiiiieeeeee e 64......
7.4 Transport CONFIQUIALIONoooii i 67.....
7.5 Default retry FUIE «.....ooe i 67......
7.6 Rewriting CONfIQUIALIONcooiiiiiiiie e 68.....
7.7 Authenticators Configurationooooiii oo 68....

B =0 U] U= o] =271 (o] R 69......
. File and database I00KUPS ooiiiiiieeee e 70.....
9.1 Examples of different I0OKUP SYNTAXccooeeieiiiiiiiee e Z0...
0.2 LOOKUP TYPES .t eeeeeeeeeeeenessnnnensssnnnsnnnnnnsnnsnssnnsnnesid Onrrrnn.
9.3 SiNgle-Key I00KUP TYPESoeieeiiiiiiiiiiei ettt e e a e e 71.....
9.4 Query-style l0OKUP tYPESuuueiiiiiiiiiiiiiiiiiiiiieiieieeiieeeieeieeeeeeeeeeeeeeseeeeeeeeeeeeeeeeneeeeeeeeeeeees dBeeens

9.5 Temporary errors iN l0OKUPScovviiiiiiieeeee e 74....
9.6 Default values in single-key 100KUPS ... 74...
9.7 Partial matching in single-key [00KUPS ..o 75...
1S IS I e o1 (U o J o= T 11 T [P 76......

iv

9.9 QUOLING [00KUP data ...ceeeeeeeeeeeeeee s 76......

9.10 More about dNSADcoooiiiiiiii e d Dl
9.11 Pseudo dnsSdD reCOrd tyPeSuuuuuuuueiiiiiiiiiiieiiiiiiieees 77....
9.12 Multiple dnsdb I0OKUPS .. .ccooeieeeeeee e 18.....
9.13 MOre abOUt LDAPccoiiiiieeeie e d B
9.14 Format Of LDAP QUETIESueeiieiieiiieiiiiiiiieieieeieeseeseeees d Der,
9.15 LDAP QUOTING .ceeeieeeeeeeeee e 79......
9.16 LDAP CONNECHIONSeiiiiiiiieeeiiaiiit et e ettt e et e e e e e s e e e e e e e e eeeaeens 80......
9.17 LDAP authentication and control informationcccceeiiiiiiiiiiieee e 81.
9.18 Format of data returned DY LDAPuuuiiiiiiiiiiiiiiieeiieiieeieeee e eeeeeeeeeas 82...
9.19 MOre @abOUL NISH ...t e e ae e 82......
S I I @]I o o] (U 1SR 83......
9.21 More about MySQL, PostgreSQL, Oracle, and InterBaseccccccevvvevvieviivnienneen. 83
9.22 Specifying the Server in the QUETYeeeiiiiiiiiiiiiieiiieeieeeeeeeeee e e e e e eeeeeeas 84...
9.23 Special MYSQL fEALUIESooiiiiiieiiieiieee et 84.....
9.24 Special POStGreSQL fEATUIESooiiiiiiiiiiiiiie et e e 84....
9.25 More about SQLITE ...ooooiiieiieeeeee e 85.....
10. Domain, host, address, and local part listS ..o 86..
10.1 EXPANSION OF lISES ...ttt n e e e ee e e e 86......
10.2 Negated itemMS IN HISTSuuiiiiiiiiiiiiiei ettt eeeeeeeeeeeeeeeeeeeeeeeeees 86.....
10.3 File NAMES IN TISTS ... 86......
10.4 An Isearch file is not an out-0f-liNe liStooviiiiiiiii e 87...
10.5 NAMEA lISES ...t e e e e e e e e e e e 81.......
10.6 Named lists compared With MACIOSc.coviiiiiiiiiiiiii e 88...
10.7 Named liSt CAChINGccooiiiiiii e neennee 88.....
10.8 DOMAIN LISTS ...eeeeeeeeeiiiiiiie ittt e e e e e e e e e e e as 89.......
F0.9 HOSE HISES ..ot e e e e e e et e e e e e r e e e 9l.......
10.10 Special NOSt lISt PAIEINS ... al....
10.11 Host list patterns that match by IP address ... al.
10.12 Host list patterns for single-key lookups by host addressceeeeeiiiiiiiieinnnnee. 92
10.13 Host list patterns that match by host name ... Q3.
10.14 Behaviour when an IP address or name cannot be foundccccceeviiiiiiinnnnn. 94
10.15 Temporary DNS errors when looking up host informationcccccooviiiiiennnen. 94
10.16 Host list patterns for single-key lookups by host name ... 4
10.17 Host list patterns for query-style [00KUPSooooiiiiiiiii, 95..
10.18 Mixing wildcarded host names and addresses in hoSt liStSeeveveiiiiiiiiiieienenl! 95
10.19 AAAIESS SIS ...eieeiiieeiiiite ettt et e e e e e s e e e e e e 95......
10.20 Case of letters in addreSS lISTScoiiiiiiiiiiiiiii e 98...
10.21 LOCAI PAIT IISTS ...ttt e s e e e e eeeeneeees Qs8......
11, SHrNG EXPANSIONS .oiiieiiiiiiitiieieee e ettt e e e e e e e e e e e e e e e e e e b e e e e e e e e e s s nbbe s e e e e e e e e s e nnnnnneeeeas Qa......
11.1 Literal text in eXpanded SrNGScccccooioiiie e eeeeeeeeeeeeeeeeeeeeeeeneeeees 99....
11.2 Character escape sequences in expanded StrNgSeeeeeerieeieeeeieeeeeeeeeeeeeeeeeeeee. Q9
11.3 Testing StriNG EXPANSIONSuuuuuuuuuuunueenueenuenneeeeennneeneaennenseesseeeseeeseeeseeeseeeeeeeeeeeeeeeeees 99....
11.4 Forced expansion failure ... 100..
T ¢ o T= 1 1S3 o] (=T 1 L PP 100....
G o T= T LS (o] g o] 0= = (] PR 109...
11.7 EXPansion CONAILIONScoooiiiiiiiieeeee e 114...
11.8 Combining expansion CONAItIONScoooiiiiiiiiiii e 120.
e ¢ o T= T LS (o] Y 7= 1 F=] [P 12Q...
12, EMBDEAAEA PEIl ..o e 136.....
12.1 Setting up so Perl can be used ... 136.
12.2 Calling Perl SUDFOULINEScoooiiiiieiie e 136...

12.3 Calling Exim functions from Perl ... 137.

12.4 Use of standard output and error by Perl ... 137
13. Starting the daemon and the use of network interfaces ... 138
13.1 Starting a listening dAGMONuuuiiumiiiiiiiiiiiiiiiieeeeieeeeeee e eeeeeeeeeeeeeeeees 138..
13.2 Special IP listening addreSSEScoovvviiiiiiiiiiiiee e 139.
13.3 Overriding local_interfaces and daemon_Smtp_pPortSccccccvvveiiiiiiiiiiiiiieeeeeeeee. 139
13.4 Support for the obsolete SSMTP (or SMTPS) protocolccevveeiiiiiiiiiiiiieeees 139
13.5 IPVE QUUIESS SCOPES .eeeeeeeieieieeiieeieieeeteeateeeaaeeeaaaaaeaeaaaeeeees 14Q...
RS B G I T E7= T][T 1Y P 14Q....
13.7 Examples of starting a listening daemon ... 140
13.8 Recognizing the 10Cal NOSTooviiiiiiiiiiii 141..
13.9 Delivering to a remote hOSEcoooiiiiiie s 141..
2 /=TT I o T U = U1 o] o R 142....
14.1 MISCEIIANEOUSooeeiiiiiiiiiiiee ettt e e e e e e e e e e e e e aanes 142....
I (g T o T T = 10 4= (= £ PP 142....
14.3 Privilege CONLIOIS ...cooeiiieiieeeeeeeee s 142...
2 e To T 1] o SRS SRR 142.....
145 FrOZEN MESSAGES .eettuuuiiieaiieititti e e e et e eeattt e r e e aaaeetettbaaaaeaaaeeaesbaaa e e eaeeeeesssnaannss 143...
I G B = 1 = T (oo (U | 1RSSR 143....
I T T ST T T T PP 143....
14.8 Embedded Perl STartupoooooiriioioie oo 143...
e B - T=T 1 [o 143.....
14.10 RESOUICE CONEIOI .ot e ettt a e e e e 144....
14.11 POLICY CONLIOIS ... 144....
14.12 CalloUt CACNEcoeiiiie et e e e e 145....
I I T I SO PP PP PP PPPPTPPPI 145......
I 0 o To= | L=< gl = T o |1 o PR 145...
14.15 All incoming messages (SMTP and NoN-SMTP)oouiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 145
14.16 NON-SMTP iNCOMING MESSAUESuuuuuuuururnunnuenunnnnnnnnnnnnneesensneesenneeeeeeeeeeeeeeeeeeeeeeees 146.
14.17 INCOMING SMTP MESSAYES ...evevvueereneiuieieieieieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeaereeeeeeeees 146..
14.18 SMTP EXIENSIONSutiiiiiiiiiiiiitiie et e e e et e e e e e r e e e e e e e e e e e e e e s e eeeeeas 146...
14.19 ProCeSSIiNG MESSATES ...cceiieeeeeieeaaeeaaaaaaaaaaaaaaaaaaaaaaaaa s s e nnnnnnnnnnnnnnesnnennne 146...
14.20 SYSIEM FILEE ..ceieeiie e e 147.....
14.21 ROULING AN AEIVEIYeieiii ettt e e e e e e eeeeeeeeeeas 141...
14.22 Bounce and WarNing MESSATESceeeeeeeeeieeeeeeeeeeeeeaea e aaaaaaaaaaaaaaaaa s s aaaasaaeaaeeennnnes 147.
14.23 Alphabetical list of Main OPtioNSoooeiiiii i 148.
15. Generic OptioNS fOr FOULEIS oooiiiiiii oo 189..
G N g T = ToT o= | (11 (] PSP 202....
17. The dnsIOOKUP FOULET oo 203...
17.1 Problems with DNS I0OKUPSeuuuiiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e eeeeeas 203..
17.2 Private options for dnSIOOKUPoooeeeiiiie e 203.
17.3 Effect of qualify_single and search_parentsc.cccccoovviii 205
18. The IPHEEral FOULEE ...ttt e e e e e e e e e e e e e eeeeas 2017....
19. The iplOOKUP FOULET oo 208....
20. The ManUAITOULE TOULET coiiiiiiiii et e e e e e e e e e e e e 210...
20.1 Private options for ManualrOULecooiiiiiiiiiiee e 210.

20.2 Routing rules in route_liStooviiiiiiiii 211..

20.3 Routing rules in route_dataloovvveiiiiiiiiiiiieee e 212..
20.4 Format of the lisSt Of NOSESuiiiiiiiie e 212..
20.5 Format of ONE NOSEITEIMcoiiiiiiii e 213..
20.6 HOW the list Of NOSEIS IS USEAccoiiiiiiiiiiieiee et 213..
20.7 How the OptioNS @re USEAooviiiiiiiiiiie e 214..
20.8 Manualroute eXamMPIESuuuuuuiiiiiiiiiiiiiieiieiiieieee e eeeeee e ee e e e e e eeeeeeeeeeeeeeeeeees 214...
21. The qUErYPrOgIram FOULET eeiiiiiiiiiiiiee et eee et et ettt ettt e e et e e e et e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaens 2117...
22. TNE FEAINECE TOULET ..oeieiiiiee ittt ettt e e e e e e e e e e e r e e e e e e e anes 2109....
22.1 REIrECHON TALAvveeeiieeiiiiiiie ettt e e e e e e e e e e e e e e n e 2109....
22.2 Forward files and address VErifiCationoccuviiiiiieeiiiiiiiieecee e 219
22.3 Interpreting redireCtion dataoooeeiiiiiii oo 220..
22.4 Items in a non-filter redireCtion liIStcoooiiiiiiiiie e 220.
22.5 Redirecting to alocal MailboXcoooiieiiiiii s 220..
22.6 Special items in redireCtion lIStScoooi oo 221.
22.7 DUPICAte AOAIESSES ... oo ieeii e nnennne 223...
22.8 Repeated redireCtion XPANSIONuuuruuuuuuueuueeeeeneurenneeneeeneneneeneeenneeeeeesneeeneeeees 223.
22.9 Errors in redireCtion lISTSooviiiiiiiiiieii e 223..
22.10 Private options for the redir@Ct FOULETuuuuiuiiiuiiiiiiiiiieieeiiieieeeeeeeieeeeeeeeeeeeeeeee 223
23. Environment for running local tranSportS ..o 231
23.1 CONCUITENE AEIIVEIIESeeiiiieiiiiiiee ettt e e e e ee s 231...
PG T B [(o K53 T g To o | o £ SRS 231....
23.3 Current and NOME AIFECIOMIESoeviiiiiiiiiiiiiieee e 232.
23.4 Expansion variables derived from the addressccccccvvvvviiiiiiii 232
24. Generic optioNns fOr trANSPOIS ..oeiiiiiiiiieeeee e 233.
25. Address batching in local tranSPOrtS .o 239
26. The appendfile traNSPOIT uiiiiiiiiiiiiie it eee e ee e e e e e e e eeeeeeeeeeeeeeeeeees 241...
26.1 The file and direCtory OPLIONScoooeeiiiiiei e 241.
26.2 Private options for appendfile ... 242.
26.3 Operational details for appendingcooooiriiiiiiiioi 251.
26.4 Operational details for delivery to a new file ... 253
26.5 MalAIr EIVETYeieeiiiiiiieie ettt ettt e et e e e e e e e e eeeeeeeeeeeeeeeeeaeeees 253....
26.6 Using tags to record MESSAQE SIZESccoiiiiieieeeie e eeeeeeeeeeeeneeeeee 254
26.7 Using @ MaildirSize fil@uueeiiiiiiiiiiiiiiiiiiiiiiieie ettt e e e e e e e e e e e e e eeeees 254...
26.8 MaIStOre EIVEIYeeeiiiiiieeieeeeeeeeee ettt e e e e e e e aaaeeas 255....
26.9 Non-special Nnew file deliVEery ... 255..
27. The autoreply tranSPOMT ..o 256...
27.1 Private options fOr @QUIOTEPIYuuueieuimiiiiiiiiiiiiiiiiiieiieei et e e e e e e e e e e e eeeeeees 256..
28. The IMP tranSPOIT oo e 259....
29. The PIPE traNSPOIT oo e 261....
29.1 CoNCUITENE AEIIVEIY ..oeveiiieiieeee e, 261...
29.2 Returned Status and datalcueeiiieeiiiiiiiie e 261..
29.3 HOW the COMMEANT IS TUNeiiiiiiiiiiiii et e e e e 262..
29.4 ENVIrONMENT VAIADIESoiiiiiiiiiiiiie et 262...

29.5 Private OptioNS fOF PIPEeeeeiiiiiiiiieiiiie ettt 263...

29.6 Using an external local delivery agenteuueeeueeiuieiimmeieeiiieiieeeeeeieeeeeeeneeeeeeeee 267
1CTO TR I o ToT=Y o T R 1= T L= oo o AP 269....
30.1 Multiple messages on a single CONNECLIONc.oevviiiiiiiiiiiiiiie e 269
30.2 Use of the $host and $host_address variablescccovvviieiiiiie e 269
30.3 Use of $tIs_cipher and $tIS_peerdncooviiiiiiiiiiiiee e 2609,

30.4 Private options fOr SMIPcoooiiieieeeeeee e 269...
30.5 How the limits for the number of hosts to try are used ..., 277
30 Ao (o [TSR €=V] o T PP 279....
31.1 Explicitly configured addreSs reWritiNgeeeueeuuerrumemmmmeeeeneneeeeneneneeeeeeeeneeeeeeee 279
31.2 When does reWriting NaPPENT? ... eeee 279.
31.3 Testing the rewriting rules that apply on iNPUtooooiiiiiiii s 280

31.4 REWIIHING FUIBSeiiitiiiiiiiiieiteeiieiieeiee ettt ettt e e e e e e e e e e e e eeeeeeeeeeeeeeeeaeaeees 280....
31.5 ReWrtING PAEINS .. oo 281...
31.6 Rewriting replaCcemeNntscoooii i 282..
31.7 ReWrtING flagS .ooo oo 282....
31.8 Flags specifying which headers and envelope addresses to rewrite 282
31.9 The SMTP-time rewriting flagcooveiiei e 282.
31.10 Flags controlling the reWriting PrOCESSuuuuuuerrrmeiieiiieeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 283
31.11 REWTrItiNG EXAMPIESuuuuiuiiiiiieiiiiiieeieeetieeieeaeaaeeees 283...
IC YA & (=1 1 VA o0 1110 [0 = 11 (o] o NP 285....
32.1 Changing retry FUIEScoooii i eeneenee 285...
32.2 FOrmat Of retry TUIEScooeii i 285...
32.3 Choosing which retry rule to use for address errorscevvvvvevvieeiieeiieeieeeeeeeeeee, 286
32.4 Choosing which retry rule to use for host and message errors...........ccccceeeeeeeee.. 286
32.5 Retry rules for SPECIfIC ITOISiiiiiiiiiiiiiei e 281..
32.6 Retry rules for specified SENAErsSoooviiiiiiiiiii 288.
32.7 RELrY PArAMELEIS ...ttt e e e e et et e e e e e e e e atb b e e e aaaaas 289....
32.8 Retry rule @Xamplesooooiiiiiiiiii e 289...
32.9 TIMEOUL Of FEIIY ALveieeeiiiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e eeeeeeeeeeeeeees 290...
32.10 Long-term failUreScooviiiiiiiieiieee 290...
32.11 Deliveries that work intermittently ... 291
33. SMTP QUINENTICALION ..ot e e e 202...
33.1 Generic options for AUtNENTICAIONSueueiiiiiiiiiiiiiieeiieee e 293.
33.2 The AUTH parameter on MAIL cOMMAaNdScoooiiiiiiiiiiiiieeeeeeeeeeeeeeee e 294
33.3 Authentication on an EXIM SEIVETcccuuiiiiiiiiiiiiieeee e 295.
33.4 Testing server authentiCation ..o 296..
33.5 Authentication by an EXim CENTuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiieiiieieeeeeeeeeeeeeeeeeeeeeeeees 296.
34. The plaintext authentiCator oooviiiiiii 298..
34.1 PlainteXt OPLIONS ..o e 298....
34.2 Using plainteXt iN @ SEIVETccoiiiii oot eeeeneeeneenee 298..
34.3 The PLAIN authentication MeChaniSmccceeviiiiiiiiiiii e 298
34.4 The LOGIN authentication MeCRaNISIMcouiiiiiiiiiiiiiieeee e 299
34.5 Support for different kinds of authenticationccccoooiiiiiiiiiiiiies 300
34.6 Using plainteXt in @ CENToeiiiieeee e 300..
35. The cram_md5 authentiCator ... 302..

35.1 USING Cram_MAD5 @S @ SEIVELooeiiiiiiiiiiiieeiieee ettt ettt ettt e e e e e e e e e e aaaaaaaaaas 302.

35.2 Using cram_md5 as @ ClIeNtoooeeiiiiiii e 302..
36. The cyrus_sasl authentiCator —coooiiiiiiii i 304..
36.1 USING CYrUS_SASI QS @ SEIVENcoeeiiiiiiiiiiieeiieee ettt a e e e 304..
37. The dovecot QUtNENTICATON ooiiiiiiiiiiie et e e e 306...
38. The spa authentiCatoroooviiiiiiiii 307...
38.1 USING SPA AS 8 SEIVET ...eeeiiiee e e ennnne 307...
38.2 USING SPA S @ CHENTuiiiiiiiiiiiiiiiiiiet ettt eeeeaaeees 307...
39. Encrypted SMTP connections using TLS/SSL ... 309
39.1 Support for the legacy “ssmtp” (aka “smtps”) protocolccccevvviiiiiii. 309
39.2 OPENSSL VS GNUTLS ..ttt e e e e e e e e e 300...
39.3 GNUTLS parameter COMPULALIONeeeiiieiiiiiiiieiee e e e 310.
39.4 Requiring specific ciphers in OPEeNSSLcoovvvviiiiiiii 310
39.5 Requiring specific ciphers or other parameters in GNUTLScccccceeiiiiiiiiieennenn. 311
39.6 Configuring an EXim Server to USE TLS ..o 312
39.7 Requesting and verifying client certificatesccccoeeii 313
39.8 REVOKEd CEIIfICALEScceiiiiiiieieiie ettt e e e e e e 314...
39.9 Configuring an EXim client t0 USE TLSuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeieeeeeeeeeeeeeeeeeeeee 314
39.10 Multiple messages on the same encrypted TCP/IP connectionccccee.... 314
39.11 Certificates and all thALooooiiiiii e 315..
39.12 CertifiCate CRAINScoiiiiiie e e e e e e e 315...
39.13 Self-SIgNed CErtifiCALESciiiiiiiiiiiiiii e e e 315..
40. ACCESS CONMIOI lISES .t 317....
O Tt O == 1 o 2 PSPPSR 317....
40.2 Specifying When ACLS are USEdccoiiiiiiiiiiiiiiiiiiiieieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 317.
40.3 The NON-SMTP ACLSuiiiiiiiiieiiii e e e e e e e 318...
40.4 The SMTP CONNECE ACL ...t e s 318..
40.5 The EHLOHELO ACL ...ttt e e 318...
40.6 TNE DATA ACLS ...ceeieeiiie ettt e e e e e e e e e e e e e e nnnnees 318....
40.7 The SMTP DKIM ACL ...oiiiiiiiiiiee ettt e e e aeeas 3109...
40.8 The SMTP MIME ACL ...ttt e e a e e 319...
40.9 The QUIT ACKL ittt e e e s e e e e e e e e e r e e e e s 319....
40.10 The NO-QUIT ACL ..eiiiiiiiiiiiiiie ettt e e e s eeeeeas 319...
o Tt I R o g = T g I O I (o BN S SRR 320...
40.12 ACL FELUIN COUES ...eiiiiiiiiiiiit e e ettt et e annnnees 320...
40.13 UNSEt ACL OPLIONS ..ooiieiiiieeeeeeeee e 321...
40.14 Data for meSSage ACLS ..o 321..
40.15 Data for NON-mMeSSage ACLScooiiiiiiiieeeeeeeee 321.
40.16 FOrmat Of @n ACLcooiiiiiieiii et 322...
A0.17 ACL VEIDS ..ottt e et e e e e e e e 322....
40.18 ACL VANADIESoeeiiiieeiei et e e e e e e 324....
40.19 Condition and Modifier ProCESSING ...cceeeeeieeeieeeeeeee s 324
40.20 ACL MOGIFIEISuiieeiieeeee ittt e e e e e e e e e s e e e e e e e e annns 325....
40.21 Use of the control MOIfIENoeiiiiiiiiee e 329..
40.22 Summary of message fiXuUp CONIOLcooviiiiiiiiiie e 332
40.23 Adding header liNeS iN ACLS ..o 332.
40.24 ACL CONITIONSiiiieiiieee ettt e e e e e e e e e e s e e e e e e e e annnnreeeaeeas 333....
40.25 USING DNS LSS ...ereeiiiiiiiiiiiiii et e e e e s e e e e e e e 331....
40.26 Specifying the IP address for a DNS liSt I0OKUPccvvviiiiieiiiiiiieecccee 338

iX

40.27 DNS lists keyed on dOmMain NAMESeeeiiiieiiiiiiiiriee e e s 338

40.28 Multiple explicit keys for a DNS LISt ..o 338
40.29 Data returned by DNS lISIS ...ccooiiiiiii i 339..
40.30 Variables set from DNS lIStScouiiiiiiiiiiiiiiiccee e 339.
40.31 Additional matching conditions for DNS liStScccooiiiiiiiiiiiiieiieeeee s 340
40.32 Negated DNS matching CONAItIONSuuueuiuiimuiiiieiiiieiieiieerieeeeeeeeeeeeeeeeeeeeeeeee 340
40.33 Handling multiple DNS records from a DNS liStccvvviiiiiiiiiiiicceeei 341
40.34 Detailed information from merged DNS liStSccvviiiiiiiiiiiiieceeeeee e 342
40.35 DNS [IStS @NA IPVGooiiiiiiiiiiiiiiiiee et e s 342...
40.36 Rate limiting iNCOMING MESSAQESuuuururuuruunrinuinnnnnnuenneeeneenneennnennenssennneeneeeneeeeees 343.
40.37 Ratelimit options for what is being measuredccccvveeiiiiiiiiiiiiiiieiieeeeeee 344
40.38 Ratelimit options for handling fast Clientscccueiiiiiiiiiiiiiiiiiieeeeeeeeeee 344
40.39 USING rate lIMItING ..ottt eeeeeeeeeeeeeeees 344...
40.40 Reading ratelimit data without updatingccoovviiiiiiii 345
40.41 AdAress VEIIICATIONcuuiiiiiiiee et e e e e e e 346...
40.42 CalloUt VEIIFICALIONeeiiiiieie e et e e e e e e 346...
40.43 Additional parameters for callouts ... 341.
40.44 Callout CACNINGcoeiiiii e 349....
40.45 Sender address verification rePOrtingcccvveeeveeeeiiiiiiiiieee e 350
40.46 Redirection wWhile VErifyingoooviiiiiiiii 350..
40.47 Client SMTP authorization (CSA)eeeiiiooiiiiie et 351
40.48 Bounce address tag validationccoooiiiiiiiiii 352.
40.49 Using an ACL t0 cONtrol relayingooooeooooooeieeieeieie e 353.
40.50 Checking a relay configuration ... 354.
41. Content scanning at ACL tIMe ..o 355..
41.1 SCaNNING fOF VIFUSEScoeiiiiieeeee et 355...
41.2 Scanning With SPaMASSASSINccoiiiiiiiieeeee e 358.
41.3 Calling SpamAssassin from an EXim ACL ... 359
41.4 Scanning MIME PArtSoooiiiiiiiiiiiii e 360...
41.5 Scanning with regular @XPreSSIONSuueuuuurureurierieeeeeeeeeeneeeneneeenereenneeneeeneeeee 362.
41.6 The demime CONAITIONc.eviiiiiiie e r e e e e e e e e annes 363...
42. Adding a local scan function to EXim ... 365
42.1 Building Exim to use a local scan functioncccccueeeevieiimeiieeiiiiiiieiieeeeeeeeeeee. 365
v N o I (o) gl (o Tox= | o o T SRR 365...
42.3 Configuration options for local_Scan()ccooeeeeiiiiiiii 366
42.4 Available EXim variablesoooiiiii s 367...
42.5 Structure Of NEAUET lINESoiiiiiiii e 369..
42.6 Structure Of reCIPIENT ILEIMSuuuiiieiiiiiiiiiiiiiieteeeieeeeeeeaees 369..
42.7 Available EXim fUNCLONSuiiiiiiiieii e 370..
42.8 More about Exim’'s memory handling ... 374
43. System-wide message filteriNg oeeeiiiiiii e 375..
43.1 SpPecCifying @ SYStEM filter e eeeeeeees 375..
43.2 Testing a system filter ... 375...
43.3 Contents of @ System filter ..., 375..
43.4 Additional variable for system filters ... 376
43.5 Defer, freeze, and fail commands for system filtersccccc 3176
43.6 Adding and removing headers in a system filter.............cccoe 377
43.7 Setting an errors address in a system filter ... 377
43.8 Per-address filteringoooooveii i 378...
Y [IYo Vo L= o] o Tt 11 | o o 379...

44.1 Submission mode for Non-local MESSAGESuuuiuiiiiiiiiiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeeee 379

A4.2 LINE BNAINGS ..oieiieeiieeieee e 380....
44.3 Unqualified addreSSEScoooiiiiiiiiii e 380...
44.4 The UUCP From lINE ..ottt e e 381...
44.5 ReSeNt- NEAUET INEScooiiiiiiiiie e e 381...
44.6 The Auto-Submitted: header N ... 382.
44.7 The BCC: header iNEcceiiiiiieie e 382...
44.8 The Date: header lINEoooiiiiiiic e 382...
44.9 The Delivery-date: header liNeuuuiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 382.
44.10 The Envelope-to: header liN@ ... eeeeeeeees 382.
44.11 The From: header lINEooo i 382..
44.12 The Message-ID: header liNe ...t eeeeeeeeeeeeeeeeeees 383.
44.13 The Received: Neader liNEooiiiiiiiii e 383..
44.14 The References: NEAUEr liNEcoooiiiiiiiiiii e 383.
44.15 The Return-path: header lIN@ ... eeeeeeeeeeeeees 383.
44.16 The Sender: header lINE ... 383..
44.17 Adding and removing header lines in routers and transSportscccccceveeeeeeeeee. 384
44.18 CoONSLruCted AUUIESSESeeeiiiiiiiiitiiiiie e et e e e e e e e e 385..
44.19 Case Of I0Cal PANTS ..oooeiiiiieeeeee e 385...
44.20 DOtS iN [OCAI PAITS ...ttt e e e e eeeeeeees 386...
44.21 ReWNtING AAAMESSES ...coeeeiiiiiiiiieee e 386...
A5, SMTP PIOCESSING .eteeeeeieeeiiiiitiieette e e e e et e e e e e e s s re e e et e e e e e s s b n e e e e e e e e e e sannbbnnreeeeeeaaannns 387....
45.1 Outgoing SMTP and LMTP over TCP/IPcccuviiiiiiieeiieee e 387
45.2 Errors in outgoiNg SMTP ..ot 388..
45.3 Incoming SMTP messages over TCP/IP ... 389
45.4 Unrecognized SMTP COMMANGASuuuuuuuumiiiinieieieeiieeieeeeenneaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 391.
45.5 Syntax and protocol errors in SMTP comMmMandsccccuveririeeinnniiiiiieeeee e 391
45.6 Use of non-mail SMTP COMMANTScooiiiiiiiiiiiiiiieeeee it 391
45.7 The VRFY and EXPN COMMANGScooiiiiiiiiiieeieeiiiieee e 391
45.8 The ETRN COMMANTooiiiiiiiiiiiiiiiie et e e e e e 391...
45.9 INcomiNg 10CAI SMTP ..o 392...
45.10 Outgoing batched SMTP ..., 392..
45.11 Incoming batched SMTP ..., 393..
46. Customizing bounce and warning MESSAQES evvvrrrrreruremmmeeeeereereeeeeeeeeeeeeeeeeeeeeeeees 394
46.1 Customizing BOUNCE MESSAGEScciiiiiieeeeee e 394.
46.2 Customizing WarniNg MESSAJES ...uuuuuuuuuuuunnnnnnnnnnnnennnennnennnennnennneennensesnnssnsssnnesssnnnees 395.
47. Some common configuration SEtINGS ...ooociiiiiiiiee e 396
47.1 Sending Mail t0 @ SMAIt NOSTuuuiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeees 396..
47.2 Using Exim to handle mailing liStScoooiiiiiiii e 396.
47.3 Syntax errors in Mailing liStSooooiiiiiiiii e 396..
47.4 Re-expansion of Mailing lISTSeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeees 397..
47.5 Closed MailiNg lISTS ...ttt e e e e eeeeeeeeeas 397...
47.6 Variable Envelope Return Paths (VERP)uuuiiiiiiiiiiiiiiiiieiiiiiiieeiieeieeeeeeeeeeeeeeeee 398
A7.7 Virtual dOMEINSoooeiiiiiiiii et e e e e e e e e e e nnneees 3909....
47.8 Multiple user MailbDOXESoovviiiiiiiiii 400...
47.9 Simplified Vacation PrOCESSINGuuuuuuuruueiuuiiueiiiueiueeeeueeeeeeeeeeeeeseeeeeeenneeeeeeeeeeeeeeeees 401.
47.10 Taking copies Of Mallooovviiiiiiiiii 401...
47.11 Intermittently connected NOSESoooiiiiiiiii 401.
47.12 Exim on the upstream Server NStoooooviiiiiiii 401
47.13 Exim on the intermittently connected client hostcccc . 402
48. Using Exim as a non-queueing ClIENt ..o 403

Xi

49. LOgfileS oo e 40D

49.1 Where the 10gS are WItEEN ...t eeeeeeeeeeeees 405..
49.2 Logging to local files that are periodically “cycled”ccoouvuviiieiiiiiieiiiiiiieeieeeee. 406
49.3 Datestamped 10g fileSooviiiiiiii 4086...
Ko I A o o o Lo I (0 J=3Y£S] (o o [PURPPPRRRSRRRRRRRRR” | AR
Ve TR o To 11 = = Vo LSS PSPPI 408....
49.6 L0ogging MeSSage rECEPLIONcovviiiiiiee e 408..
49.7 LOogging EIIVEIIEScooiiiiiiiiieieeeee e 409....
49.8 DiISCarded TEIVEIIEScciiiiiiiiiiiii et e s 410...
49.9 Deferred delIVEMESooooiiieiiii e 410...
49.10 Delivery faIlUIEScccccouiuuiieiiieiiiiiiiiieineereeeneeneeeereesneeeeneeeeeeeseeemeeeeeeeeeeeeeeeeeeeeee 4100
49.11 FaKe UEIVEIIES ...ttt e e e e e as 410....
49.12 COMPIBLION oo 411....
49.13 Summary of Fields in LOG LINEScooiiiiiiiiiiecieee et 411.
49.14 Other 10g ENIMESooiiiiiiiiiiiei e 411....
49.15 Reducing or increasing what is loggedcoooiiiiiiiiiiiiiinceeeennn 412
49.16 MESSATE 100 ..eeeereeiiiiiiiiiieiiiee ettt ettt ettt ettt et e e e et e e e e e et e e et e e e e e e aaaaaaaaaaaaaaaaaaas 415....
50. EXIM ULIITIES ooeeeiieeiiiie ettt e e e e e e e e s r e e e e e e 417.....
50.1 Finding out what Exim processes are doing (exiwhat)cccccoviiiiii 417
50.2 Selective queue listing (EXIQOIEP) .oeeeeeeeeeeeeeee e e eee e 417.
50.3 Summarizing the queue (EXIGSUMIMY)oiiiiiiiiiiiieiieee et aaaaaaaaaaaeas 418
50.4 Extracting specific information from the log (eXIigrep)ccovveeeeeeeiieeiee 419
50.5 Selecting messages by various criteria (eXIPICK)oovvvviviiiiiiiiii 419
50.6 Cycling log files (EXICYCIOG) «.eevveiiiieiiiiiiiiiiieee 419..
50.7 Mail statistics (EXIMSIALS) ..ovvviiiiiiiieie e 420Q..
50.8 Checking access policy (exim_checkacCess)cooeeiiiiiiiiiieiiiieeees 421
50.9 Making DBM files (exim_dbmbuild) ... 421
50.10 Finding individual retry times (EXINEXL)cooieiiiiiiiee e 422
50.11 Hints database MaiNtENANCEc.uviiiiiiiiiii e 422.
L0 I 2 = d ¢ e (1 0] oo | PR 422....
50.13 eXIM_tidYdDoeoiiiee e 423....
50.14 eXiM_fIXUDeeiiiiiii e D230
50.15 Mailbox maintenance (eXim_I0CK)ccoeviiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeieeeeeeeeeeeeeeeen L A24,
51. The EXIM MONITOT ..oooiiiiiiiiiie et e e e e e e e e e e e e 426....
51.1 RUNNING the MONITOT ..o 426...
o I g oI i] o od = T PRSP 426....
51.3 Main aCtION DULLONSeeiiiiiiiiiiiiii it e s e e 427....
o3 I g T o T 0 L] o] = PRSP 427....
51.5 The queUe diSPIayccooiiiiiiiie e neeenee 428 ...
51.6 THE QUEUE MEBNU ...ouiiiiiiiiiiiieiiieiieteeeeeeebeeeeeeeeeeneeeeseeennssnnssensssnsnneseneeeneenees D280
52. Security CONSIAEIALIONS ..o e e e e e e e e e e e ane 430...
52.1 Building a more “hardened” EXiMooooiiiiiiiiiiii e 430.
52.2 ROOL PIIVIIEOE oeeeiiieieeie e 430....
52.3 Running EXim WithOUt Privilegeoooo i 432.
52.4 Delivering to [0Cal fileScccooiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e D330
52.5 IPV4 SOUICE FOULING .oeiiiiiiiiiieeiieeee et 433...
52.6 The VRFY, EXPN, and ETRN commands in SMTPc.ooooviiiiiiiie e, 433
B52.7 Privileged USEIS ..o e 433....
B52.8 SPOOITIlES e 433.....
52.9 USE OF @rgV[0] «eeeeeieeeiiiiiieiiiee et 434....

Xii

52.10 Use of %f formattingooooeeiiiiiiie e 434...
52.11 Embedded EXim Pathcccociiiiiiiiiiiii e A34AL
52.12 Dynamic Module dir€CIONYccoeiiieiieiee e 434..
52.13 USE Of SPINTF() 1oeeeeeeeeeeee e 434....
52.14 Use of debug_printf() and 10g_Write()ooeverriiiiiiiiii 434
52.15 Use of strcat() and StrCPY() «.eeeeeeeeeremmmmmmmmmmmmmieeiineeieeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees. 4340,
53. Format Of SPOO0I fil@S .ooiiii i 435...
53.1 FOrmat of the -H fIl@oore s 435...
54. Support for DKIM (DomainKeys ldentified Mail) - RFC4871 ... 440
54.1 Signing OUtgOING MESSAUES ...ceeieeeieeeieeeee e e ee e e e e e aa e aa e e e e e e aa e e e e ennnnnnnnnes 440..
54.2 Verifying DKIM signatures in incoming mailcocoooiiiiiiiiiiieees 441
55. Adding new drivers or IOOKUP tYPES oeeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e AAA,
OPLONS INAEX oo 445......
VariabIES INAEX ...t e e e e e e e e e 451.....
LT 0] g Tol=T o 1T [T 453.....

Xiii

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AlIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-

UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in tiNCiiléCE Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the fileLICENCE

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file callelCKNOWLEDGMENTSn which | have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.76 of Exim. Substantive changes from the
4.75 edition are marked in some renditions of the document; this paragraph is so marked|if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitldthe Exim SMTP Mail Servedsecond edition, 2007), pub-
lished by UIT Cambridgehtp://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note

that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have

changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the filéusr/share/doc/exim4-base/README.Debifihe commandnan update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStufin the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in thedd&experimental.txt

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file calledloc/ChangelLog

This specification itself is available as an ASCII filednc/spec.txso that it can easily be searched
with a text editor. Other files in tlecdirectory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Section 1.6 below tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is currently the University of Cambridge’s FTP site,
whose contents are describedvifhere to find the Exim distributidmelow. In addition, there is a web

site and an FTP site axim.org. These are now also hosted at the University of Cambridge. The
exim.org site was previously hosted for a number of years by Energis Squared, formerly Planet
Online Ltd, whose support | gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted

versions of the documentation. A recent addition to the online information is the Exim wiki

(http://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users.

An Exim Bugzilla exists ahttp://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-users@exim.org General discussion list

exim-dev@exim.org Discussion of bugs, enhancements, etc.
exim-announce@exim.org Moderated, low volume announcements list
exim-future@exim.org Discussion of long-term development

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailingpisg-exim4-users@lists.alioth.debian.wig

this web page:

http://lists.alioth.debian.org/mailman/listinfo/pkg-exim4-users
Please ask Debian-specific questions on this list and not on the general Exim lists.

2 Introduction (1)

1.4 Exim training

Training courses in Cambridge (UK) used to be run annually by the author of Exim, before he retired.
At the time of writing, there are no plans to run further Exim courses in Cambridge. However, if that
changes, relevant information will be postetitp://www-tus.csx.cam.ac.uk/courses/exim/

1.5 Bug reports

Reports of obvious bugs can be emailed bags@exim.orgor reported via the Bugzilla
(http://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message togkien-devmailing list and have it discussed.

1.6 Where to find the Exim distribution
The master ftp site for the Exim distribution is
ftp://ftp.csx.cam.ac.uk/pub/software/email/exim
This is mirrored by
ftp://ftp.exim.org/pub/exim

The file references that follow are relative to #sémdirectories at these sites. There are now quite a
number of independent mirror sites around the world. Those that | know about are listed in the file
calledMirrors.

Within the eximdirectory there are subdirectories callexim3 (for previous Exim 3 distributions),
exim4(for the latest Exim 4 distributions), ani@stingfor testing versions. In thexim4subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

wheren.nnis the highest such version number in the directory. The two files contain identical data;
the only difference is the type of compression. Hz2file is usually a lot smaller than ttgzfile.

The distributions are currently signed with Nigel Metheringham’s GPG key. The corresponding pub-
lic key is available from a number of keyservers, and there is also a copy in tmégikepubkey.asc
The signatures for the tar bundles are in:

exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made separately available in a separate file in the
directoryChangelLogso that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files insidgithédirectory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only thaoc directory, not the complete distribution, and are also available in
.bz2as well asgzforms.

1.7 Limitations

» Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

3 Introduction (1)

» Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
gualified on arrival.

» The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionallpatched SMTHormat; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

» Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.8 Run time configuration

Exim'’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapter 7 below.

1.9 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement fofustr/lib/sendmailor /usr/shin/sendmailvhen sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for exabpplghich lists

the messages on the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program callegimon which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.10 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated fromhthader(see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The tebmunceis commonly used for this action, and

the error reports are often calledunce messageshis is a convenient shorthand for “delivery failure
error report”. Such messages have an empty sender address in the me=sagjejzesee below) to
ensure that they cannot themselves give rise to further bounce messages.

The termdefaultappears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The termdeferis used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries ara@leferreduntil a later time.

4 Introduction (1)

The worddomainis sometimes used to mean all but the first component of a host's namendt is
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associatedelope as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The headerof a message is the first part of a message'’s text, consisting of a number of lines, each of
which has a name such &wom:, To:, Subject; etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The termlocal part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is callddrttanor mail domain

The termdocal deliveryandremote deliveryare used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on aeenote

Return pathis another name that is used for the sender address in a message’s envelope.

The termqueueis used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

The termqueue runners used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
commandung, but in Exim the waiting messages are normally processed in an unpredictable order.

The termspool directoryis used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source to PCRE is ho
longer shipped with Exim, so you will need to use the version of PCRE shipped with your system,
or obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

» Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained fromnttp://www.pobox.com/~djb/cdb.html. This implemen-

tation borrows some code from Dan Bernstein’s implementation (which has no license
restrictions applied to it).

» Client support for Microsoft'sSecure Password Authenticatiamprovided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

» Support for calling the Cyrupwcheckandsaslauthddaemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University fttp://www.cmu.edu/computing/”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

» The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific licence requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as “open relays” by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

« Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control List§ACLS). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or rejecting individual
recipients or the entire message, respectively, at these two points (see chapter 40). Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function dattatl scan()can be run to
inspect the message and decide whether to accept it or not (see chapter 42). If the message is
accepted, the list of recipients can be modified by the function.

» Using thelocal_scan()mechanism is another way of calling external scanner software SFhe
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filte{see chapter 43). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
forwardfiles in their home directories. See chapter 22 (aboutdat&ectrouter) for the configuration
needed to support this, and the separate document eriitiets interfaces to mail filterindor user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is givemassage iavhich is sixteen characters long. It is divided

into three parts, separated by hyphens, for exarhféDhn-0001bo-D3 . Each part is a sequence

of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

 After the first hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the final two characters:

(1) If localhost_numberis not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_numberis set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’'s MUA), there are several possibilities:

 If the process runs Exim with thdom option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the messdgs if
also used.

« If the process runs Exim with théS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is so-called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

 If the process runs Exim with thdos option, the message is read interactively, using the SMTP
protocol. A two-way pipe is hormally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

» A local process may also make a TCP/IP call to the host's loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set Quali/_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender address unconditionally, or all users to specify certain forms of
different sender address. THeoption or the SMTP MAIL command is used to specify these different
addresses. See section 5.2 for details of trusted users, andttheted_set_sendeoption for a way

of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients, or the entire message, can be rejected if local policy require-
ments are not met. Thecal_scan()function (see chapter 42) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these

situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, folloviredidnythe file
containing the envelope and header, dhdor the data file.

By default all these message files are held in a single directory calted inside the general Exim

spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such casesspiie spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 53.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipi-
ents nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries
are attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options calle@ynore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to any
frozen messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

49). The log lines are also written to a sepanaiessage lodile for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logshis might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followedby At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool fileKtifée) is updated to indicate which

these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are cattaders and transports and collectively
these are known adrivers Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration isrnstanceof that particular driver type.
Multiple instances are allowed; for example, you can set up several diffengipttransports, each

with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A routeris a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transportis a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: forlacal transport, the destination is a file or a pipe on the local
host, whereas for emotetransport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that ehatch. Typically, this

is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If

it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,

or it may look up the local part in a file or a database. If its preconditions are not met, or if the router

declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also wesddiéss
verification Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested digingritie
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
theno_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a routeare met, the router is run. What happens next depends on the outcome,
which is one of the following:

» accept The router accepts the address, and either assigns it to a transport, or generates one or more
“child” addresses. Processing the original address ceases, unlessséenoption is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). Wheseenis set, the address is passed to the next router.
Normally, however, aacceptreturn marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting rédirect_router option to specify

which router to start at for child addresses. Unlgass_router(see below) the router specified by
redirect_router may be anywhere in the router configuration.

» pass The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting thepass_router option. However, (unlikeedirect_router) the named router must be
below the current router (to avoid loops).

» decline The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting rirere option.
Whenno_moreis set, all the remaining routers are skipped. In effaot,more convertsdecline
into fail.

« fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original addressuwmdessis set on the router.

» defer The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

 error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use ofddwenot_route_messageption. This can be set for
any router; the value from the last router that “saw” the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. Taairect router has a “fail”

facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it finds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routerstyigil the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter 15.

» Thelocal_part_prefix andlocal_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If theerify option is set false, the router is skipped
when Exim is verifying an address. Setting therify option actually sets two optionserify
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification.

» If the address_tesbption is set false, the router is skipped when Exim is run with-tih@ption to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to tisteto test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. Theverify_only option controls this.

* Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see #gn option).

* If the domainsoption is set, the domain of the address must be in the set of domains that it defines.

+ If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. Iflocal_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the
local part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using @ondition option (see below) that uses the variatéscal_part $local_
part_prefix and$local_part_suffixas necessary.

 If the check_local_useroption is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are plackdcal_user_uidand
$local_user_gidand the user’'s home directory is placedbimome these values can be used in the
remaining preconditions.

 If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of$home If this expansion were left till later, the value $fiomeas set bycheck local_user
would be used in subsequent tests. Having two different valugsahein the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the sendersoption is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter 11.

Note thatrequire_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use tegistsexpansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for exammiecmailrg).

3.13 Delivery in detail
When a message is to be delivered, the sequence of events is as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to

the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entil®on’s interfaces to mail filtering(Note:

Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter 43 for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter conditisin delivery can be

used to detect the first run of the system filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions, until
one is able to handle it. If no router can handle the address, that is, if they all decline, the address is
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by theremote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
gueue run or not. See chapter 32 for details of retry strategies.

 If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

» If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said tefered

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that usesg thgtion with a time interval to

start queue runners at regular intervals, or use some other means (stroh)de start them. If you

do not arrange for queue runners to be run, messages that fail temporarily at the first attempt will
remain on your queue for ever. A queue runner process works its way through the queue, one message
at a time, trying each delivery that has passed its retry time. You can run several queue runners at
once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 46 for details.

Bounce messages contain ArFailed-Recipientsheader line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.

15 Receiving and delivering mail (3)

However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
47.2) it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (dg®@eout_frozen_after andignore_bounce_errors_aftej.

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for exampiem-4.7¢ into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin WREADMEmay also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(O OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, &uild directoryis created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary.

4.3 PCRE library

Exim no longer has an embedded PCRE library as the vast majority of modern systems include PCRE
as a system library, although you may need to install the PCRE or PCRE development package for
your operating system. If your system has a normal PCRE installation the Exim build process will
need no further configuration. If the library or the headers are in an unusual location you will need to
set the PCRE_LIBS and INCLUDE directives appropriately. If your operating system has no PCRE
support then you will need to obtain and build the current PCRE from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre!

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating vianihem
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and

17 Building and installing Exim (4)

different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for nhaming the files they use. When a program
opens a file calledbmfile there are several possibilities:

(1) A traditionalndbmimplementation, such as that supplied as part of Solaris, operates on two files
calleddbmfile.diranddbmfile.pag

(2) The GNU library,gdbm operates on a single file. If used via itdbmcompatibility interface it
makes two different hard links to it with namdbmfile.dirand dbmfile.pag but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if called via nsbmcompatibility interface, operates on a single file
called dbmfile.dh but otherwise looks to the programmer exactly the same as the traditional
ndbmimplementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file daiteide the
programmer’s interface is somewhat different to the traditiodbininterface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releasearzl 3x were current for a while,
but the latest versions are now numberexi #Maintenance of some of the earlier releases has
ceased. All versions of Berkeley DB can be obtained fiap//www.sleepycat.com/

(6) Yet another DBM library, calletdb, is available fromhttp://download.sourceforge.net/tdb It
has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefilg. For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you setLiocal/Makefile however, over-

rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -ldb
DBMLIB = -ltdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

INCLUDE=-l/usr/local/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/libdb.a

There is further detailed discussion about the various DBM libraries in thddidébm.discuss.txt
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the nanoeal/Makefile A template for this file is supplied as the file
src/EDITME and it contains full descriptions of all the option settings therein. These descriptions are

18 Building and installing Exim (4)

therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copysrc/EDITMEto Local/Makefile then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of file
names; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’'s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them inLocal/Makefileinstead of at run time, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile For details of the facilities themselves, see chapter 41.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITMEMust be edited appropriately for your installation and saved under the name
Local/eximon.conflf you are happy with the default settings describedexim_monitor/EDITME
Local/eximon.confan be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults tgcc See section 4.13 below for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means$bf the
mechanism, it decodes them, and translates them into a specified character set (default ISO-8859-1).
The translation is possible only if the operating system supporisoting) function.

However, some of the operating systems that supgyv() do not support very many conversions.
The GNU ibiconv library (available fromhttp://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do notisopp(yat all.
After installinglibiconv, you should add

HAVE_ICONV=yes
to yourLocal/Makefileand rebuild Exim.

4.7 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see tlseon_connect_portsruntime option and thetls-on-
connectcommand line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL is installed, you should set
SUPPORT_TLS=yes
TLS_LIBS=-Issl -lcrypto

19 Building and installing Exim (4)

in Local/Makefile You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -Issl -Icrypto
TLS_INCLUDE=-l/usr/local/openssl/include/

If GNUTLS is installed, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS_ LIBS=-Ignutls -ltasnl -Igcrypt

in Local/Makefile and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS_LIBS=-L/usr/gnu/lib -Ignutls -ltasnl -lgcrypt
TLS_INCLUDE=-l/usr/gnu/include

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter 39.

4.8 Use of tcpwrappers

Exim can be linked with thécpwrapperslibrary in order to check incoming SMTP calls using the
tcpwrapperscontrol files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making usdagwrapperdor other purposes. To do this, you should set
USE_TCP_WRAPPERS ihocal/Makefile arrange for the filécpd.hto be available at compile time,
and also ensure that the libralipwrap.a is available at link time, typically by includingwrap in
EXTRALIBS EXIM. For example, itcpwrapperss installed inusr/local you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 -l/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile The daemon name to use in ttopwrapperscontrol files is “exim”. For example,
the line

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allovfile allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts irfriendly.domain.exampl@éAll other connections are denied. The daemon name
used bytcpwrapperscan be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in in Local/Makefile or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappersdocumentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Sét#\E IPV6=YES in
Local/Makefilecauses the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. It is not known if anyone is
actually using A6 records. Exim has support for A6 records, but this is included only if you set
SUPPORT_A6=YE$# Local/Makefile The support has not been tested for some time.

20 Building and installing Exim (4)

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

SetLOOKUP_MODULE_DIfR the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need ©FReAGS_DYNAMIG

not already defined for your OS; s@s/Makefile-LinuXor an example. Some other requirements for
adjustingEXTRALIBS may also be necessary, se6 EDITMEfor details.

Then, for each module to be loaded dynamically, define the rel&@@KUP<lookup_type flags to
have the value "2" instead of "yes". For example, this will build in Isearch but load sqglite and mysq|
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile(and Local/eximon.confif required) have been created, ramakeat the top

level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the dirbatlih5un0S5-5.8-sparc

is created. Symbolic links to relevant source files are installed in the build directory.

Warning: The-j (parallel) flag must not be used witlake the building process fails if it is set.

If this is the first timemakehas been run, it calls a script that builds a make file inside the build
directory, using the configuration files from thecal directory. The new make file is then passed to
another instance afnake This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The commanahake makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be iiREXRDME file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.12 Output from “make”

The output produced by thmakeprocess for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling makelike this:

FULLECHO=" make -e

The value of FULLECHO defaults to “@", the flag character that suppresses command reflection in
make When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed seakéinstruc-

tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile<ostype
Local/Makefile

21 Building and installing Exim (4)

Local/Makefile<ostype
Local/Makefile<archtype
Local/Makefile<ostype-<archtype
OS/Makefile-Base

where <ostype is the operating system type andrehtype is the architecture typd.ocal/Makefile
is required to exist, and the building process fails if it is absent. The other tlueal files are
optional, and are often not needed.

The values used forostyper and <archtype> are obtained from scripts callextripts/os-typeand
scripts/arch-typerespectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from tlm@ame command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A numberadfhoctransformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Defaultontains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating systens(Makefile-<ostypepto see what the default
values are.

If you need to change any of the values that are seD8/Makefile-Defaulor in OS/Makefile-
<ostype> or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropde#tfile. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is callexther thargcc Also, the
compiler must be called with the optiestdl, to make it recognize some of the features of Standard

C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file calleocal/Makefile-OSFTontaining the lines

CC=cc
CFLAGS=-std1

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents bbtatdirectory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings fapcal/Makefileare:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listectiEDITME In many cases

the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause run time configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o
must be defined ihocal/Makefile Details of this facility are given in chapter 12.
The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are

22 Building and installing Exim (4)

compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default

X11=/usr/X11R6
XINCLUDE=-I1$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOShere is

X11=/usr/openwin
XINCLUDE=-1$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into yoluocal/Makefile-<ostypeile.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section 4.4). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that isl.ocal/Makefileor Local/eximon.confbefore rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the fasmh-<ostype> These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the fié/os.configuringwhich should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.confostype
Local/eximon.conf
Local/eximon.confostype
Local/eximon.confarchtype
Local/eximon.confostype--<archtype

As with Exim itself, the final three files need not exist, and in this cas@©tBk&ximon.conf-<ostype>

file is also optional. The default values @S/eximon.conf-Defauttan be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.16 Installing Exim binaries and scripts

The commandnake install runs theexim_installscript with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting inLocal/Makefile The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and haveethé&lbit set, for
normal configurations. Therefore, you must mmake install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local

23 Building and installing Exim (4)

deliveries) it may be possible to run Exim without making the binary setuid root (see chapter 52 for
details).

Exim’s run time configuration file is named by the CONFIGURE_FILE settinganal/Makefile If

this names a single file, and the file does not exist, the default configuratianditenfigure.default

is copied there by the installation script. If a run time configuration file already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is
installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE inLocal/Makefile(/etc/aliasesby default). If the system aliases file

does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been keptatc/aliases However, some operating
systems are now usirigtc/mail/aliasesYou should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’'s name as the only local domain, and is set up to do local
deliveries into the shared directofyar/mail, running as the local user. System aliases &mavard

files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Runningmake installdoes not copy the Exim 4 conversion scriginvert4r4 You will probably run

this only once if you are upgrading from Exim 3. None of the documentation files iddbdirectory

are copied, except for the info files when you have set INFO_DIRECTORY, as described in section
4.17 below.

For the utility programs, old versions are renamed by adding the sfia their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for exampiem-4.76-1 The script then arranges for a symbolic
link calledeximto point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the namemis never absent from the directory (as seen by other processes).

If you want to see what thmake installwill do before running it for real, you can pass tlreoption
to the installation script by this command:

make INSTALL ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

* -no_chownbypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic érlnto the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make INSTALL_ARG=-no_symlink install

24 Building and installing Exim (4)

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL ARG='-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNidfo system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the ftp site (see section 1.6).

If you have defined INFO_DIRECTORY ihocal/Makefileand the Texinfo source of the documen-
tation is found in the source tree, runnintgke install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessatry.

4.19 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username
should verify that it recognizes a local mailbox, and
exim -bt <remote address

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
"D

The-v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log filesdinlog and paniclog to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the-d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim-d -M <exim-message-id

25 Building and installing Exim (4)

You must be root or an “admin user” in order to do this. FTd@ption produces rather a lot of output,
but you can cut this down to specific areas. For example, if youdisdi+route only the debugging
information relevant to routing is included. (See-th@ption in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above thecal_deliverytransport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely famtl() locking instead. However, you should

do this only if all user agents also ufmtl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, tb¥ option can be used to run an Exim daemon
that listens on some other port, dmetd can be used to do this. Thébh option and the
exim_checkaccesasility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is -eithasr/sbin/sendmail or
{usr/lib/sendmaildepending on the operating system), and it is necessary to make this name point to
the eximbinary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and makirigsr/sbin/sendmaibr /usr/lib/sendmaila symbolic link to the
eximbinary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the fildc/mail/mailer.confnstead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail Jusr/exim/bin/exim
send-mail lusr/exim/bin/exim
mailqg /usr/exim/bin/exim -bp
newaliases {usr/bin/true

Once you have set up the symbolic link, or editetc/mail/mailer.confyour Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document erfixlied’s interface

to mail filteringavailable to them.

4.21 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.

26 Building and installing Exim (4)

4.22 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop
If /usr/lib/sendmaihas been turned into a symbolic link, this script fails to stop Exim because it uses
the commangbs -eand greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by thes command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim-daemon.pid

to obtain the daemon'’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

27 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the nammailg, it behaves as if the optiotbp were present before any other
options. The-bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked hasr/sbin/sendmaibr /usr/lib/sendmail

If Exim is called under the nammsmtpit behaves as if the optiotbS were present before any other
options, for compatibility with Smail. TheébS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the nanmenail it behaves as if thd and-oeeoptions were present before any
other options, for compatibility with Smail. The nammail is used as an interface by some UUCP
systems.

If Exim is called under the nameing it behaves as if the optiorq were present before any other
options, for compatibility with Smail. Theq option causes a single queue runner process to be
started.

If Exim is called under the nameewaliasest behaves as if the optiotbi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with thebi option.

5.2 Trusted and admin users

Some Exim options are available onlyttasted usersnd others are available only &almin usersin

the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP inocal/Makefileor set by theexim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» The trusted users are root, the Exim user, any user listed intbid _usersconfiguration option,
and any user whose current group or any supplementary group is one of those listetlustdte
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use-theption or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface {seeahé-f
options below). See thentrusted_set_sendeioption for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents Bfdhre header line, and &ender:
line is never added. Furthermore, any exist®@nder:line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol hame, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstanced,use can never set the other values

that are available to trusted users.

» The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in theadmin_groups configuration option. The current group does not have to be one
of these groups.

28 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of theM, -q, -R, and-S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifyingp_prod_requires_admin).

Similarly, the use of thebp option to list all the messages in the queue is restricted to admin users
unlessqueue_list_requires_adminis set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options

Exim's command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command lindgm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias febV and causes version information to be displayed.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usuatydioption
is combined with theq<time> option, to specify that the daemon should also initiate periodic
gueue runs.

The-bd option can be used only by an admin user. If either of-th@ebugging) orv (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter 13 contains a description of the options that control this.

When a listening daemon is started without the useo¥f (that is, without overriding the normal
configuration), it writes its process id to a file calledim-daemon.pith Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH otal/Makefile The file is written
while Exim is still running as root.

When-oX is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. HoweveoP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means ointlede

29 The Exim command line (5)

facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect dsd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes irLocal/Makefile it tries to load thdibreadline
library dynamically whenever thdoe option is used without command line arguments. If success-
ful, it uses thereadline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s run time configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for exampbgualify_domai are available, but no
message-specific values (suchbaender_domajrare set, because no message is being processed
(but seebem and-Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

-bem <filename
This option operates likdoe except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables s@notessage_sizand
$header_from:are available. However, nBeceived:header is added to the message. If the
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipientsvariable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (justbije

-bF <filename
This option is the same abf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, uskF instead of-bf. You can use bothbF and-bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /userf/filter </test/message

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normaforward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

30 The Exim command line (5)

The result of an Exim command that usds, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitléh’s interfaces to mail filtering

When testing a filter file, the envelope sender can be set byf thygtion, or by a “From ” line at

the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domairr
This sets the domain of the recipient address when a filter file is being tested by meanshbdf the
option. The default is the value $fualify_domain

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by meansbf the
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty prefix.

-bfs <suffix
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty suffix.

-bh <IP address
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value @&sender_host_addresafter conversion to the canonical form is
fe80:0000:0000:0a00:20ff:fe86:a061.5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls ugihg

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the-oMt option. However, Exim cannot actually perform an ident callout when testing
using-bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section 40.42) are also skipped when testing using
-bh. If you want these callouts to occur, ublc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. Th@Mi option can be used to specify a specific IP interface and port if this

is important, andoMaa and-oMai can be used to set parameters as if the SMTP session were
authenticated.

The exim_checkaccesdility is a “packaged” version ofbh whose output just states whether a
given recipient address from a given host is acceptable or not. See section 50.8.

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested witkbh. Instead, you should use a specialized SMTP test program siswieks
(http://jetmore.org/john/code/#swaks)

31 The Exim command line (5)

-bhc <IP address
This option operates in the same way-a8b, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets thebi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmailwith the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by bhecommand configuration option is run,
under the uid and gid of the caller of Exim. If theA option is used, its value is passed to the
command as an argument. The command sebibgommand may not contain arguments. The
command can use thexim_dbmbuildutility, or some other means, to rebuild alias files if this is
required. If thebi_command option is not set, calling Exim witlbi is a no-op.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the current input. The recipients are given as the command arguments (except vghaiso
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. Thienqg option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter 40 for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the-oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this
line. Exim recognizes it by matching against the regular expression defined yitpe from_

pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument-foapion, but if a-f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bng
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses usiggalify _recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For examplep® (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The-bng option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

32 The Exim command line (5)

-bP
If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysql_servers = <value not displayable>

If configure_fileis given as an argument, the name of the run time configuration file is output. If a
list of configuration files was supplied, the value that is output here is the name of the file that was
actually used.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory callld), and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded byfor example,
exim -bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the wordsrouter, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the wawtky_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by usimguters, transports, or authenticators.

If invoked by an admin user, themacro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line.

_bp
This option requests a listing of the contents of the mail queue on the standard outputbip the
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However,gbeue_list_requires_adminoption can be set
false to allow any user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking-glass.fict.example
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>". If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

33 The Exim command line (5)

-bpa
This option operates likebp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unigssue_list_requires_adminis set false.

-bpr
This option operates likebp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra
This option is a combination ebpr and-bpa.

-bpru
This option is a combination ebpr and-bpu.

-bpu
This option operates likebp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router withdhe_timeoption set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the folotal_part@domainor it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter 31 for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trustédisoed_
set_sendeiis set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter 40). Unqualified addresses are automatically

34 The Exim command line (5)

qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenqg option is
used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected,; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section 45.11.

-bs
This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 40) are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

In this usage, if the caller of Exim is trusted, ontrusted_set_senderis set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenqg option is

used.

The-bs option is also used to run Exim frometd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called froninetd the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

-bmalware <filename
This debugging option causes Exim to scan the given file, using the malware scanning framework.
The option ofav_scannerinfluences this option, so #v_scannels value is dependent upon an
expansion then the expansion should have defaults which apply to this invocation. ACLs are not
invoked, so ifav_scannerreferences an ACL variable then that variable will never be populated
and-bmalware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bt
This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the-be test option, you cannot arrange for Exim to userdgeedline()function, because it is
running agoot and there are security issues.

Each address is handled as if it were the recipient address of a message (comgaretion).

It is passed to the routers and the result is written to the standard output. However, any router that
hasno_address_tesset is bypassed. This can malte easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

35 The Exim command line (5)

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can ukeritien to set an appropriate sender
when running-bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditionshisifitpe -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of theeximbinary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the run time configuration file that is in use.

As part of its operationsbV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot reby/on

alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The-bh and-N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence proces&rify acondition in
an ACL (see chapter 40). If you want to test an entire ACL, possibly including callouts, see the
-bh and-bhc options.

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the-betest option, you cannot arrange for Exim to userdadline()function, because it is
running aeximand there are security issues.

Verification differs from address testing (tH& option) in that routers that have_verify set are
skipped, and if the address is accepted by a router thatalilaserify set, verification fails. The
address is verified as a recipientlifv is used; to test verification for a sender addrdsegs should

be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Withgujenerating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When-v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use thef option to set an appropriate sender when runnainwgtests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

36 The Exim command line (5)

-bvs
This option acts likebv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-C <filelist>
This option causes Exim to find the run time configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single file name, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED CONFIG_LIST file is defined in
Local/Makefile that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception
works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use e€ causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message on the queuadsgiagd
another to do the delivery, usiAg).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any
file named in &C command line option must start. In addition, the file name must not contain the
sequenceé../ . However, if the value of theC option is identical to the value of CONFIGURE_
FILE in Local/Makefile Exim ignores-C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any file name can be used@ith

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The-C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section 6.4).
However, like-C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined inLocal/Makefile the use ofD is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined irLocal/Makefilethen it should be a colon-separated list

of macros which are considered safe andDifonly supplies macros from this list, and the values

are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the retjéxga-z0-9_/.-

I'$

The entire option (including equals sign if present) must all be within one command line-iem.

can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim -DABC ...
exim -DABC-= ...

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

37 The Exim command line (5)

exim '-D ABC = something' ...
-D may be repeated up to 10 times on a command line.

-d<debug options
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin userdjses
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When-d is used,-v is assumed. Ifd is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For exarapliiiiter adds filter debugging,
whereas-d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation

auth authenticators

deliver general delivery logic

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments foexecv()calls

expand detailed debugging for string expansions
filter filter handling

hints_lookup hints data lookups

host_lookup all types of name-to-IP address handling
ident ident lookup

interface lists of local interfaces

lists matching things in lists

load system load checks

local_scan can be used hbipcal _scan()(see chapter 42)
lookup general lookup code and all lookups
memory memory handling

pid add pid to debug output lines
process_info setting info for the process log
queue_run queue runs

receive general message reception logic
resolver turn on the DNS resolver’'s debugging output
retry retry handling

rewrite address rewriting

route address routing

timestamp add timestamp to debug output lines

tls TLS logic

transport transports

uid changes of uid/gid and looking up uid/gid
verify address verification logic

all almost all of the above (see below), and also

Theall option excludesnemory when used asall , but includes it for-all . The reason for

this is that+all is something that people tend to use when generating debug output for Exim
maintainers. If+memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. Howaler, does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default {d with no argument) omitexpand , filter ,interface , load , memory, pid ,
resolver , andtimestamp . However, thepid selector is forced when debugging is turned on

38 The Exim command line (5)

for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

Thetimestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or ifv is used.

-dd<debug options
This option behaves exactly likel except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr
This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 44.2.

-E
This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its
only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
charactersE. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as a cross-reference.

-ex
There are a number of Sendmail options starting with which seem to be called by various
programs without the leadingin the option. For example, theacation program useseq. Exim
treats all options of the forrex as synonymous with the correspondiogx options.

-F <string>
This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the usgosentry from the password data is used. As
users are generally permitted to alter thgéicosentries, no security considerations are involved.
White space betweef and the string> is optional.

-f <address
This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted useunbutsted_set
sendercan be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_usersor trusted_groups options. In the absence ef, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the usd:cdn empty sender can be specified by any

user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim -f '<>' user@domain
exim -f "™ user@domain

In addition, the use off is not restricted when testing a filter file withf or when testing or
verifying addresses using tHat or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that tkeom: header refers to the local user, and if it does not,
it adds a&Sender:header, though this can be overridden by settindocal_from_check

White space betweeifi and the «@ddress is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can also be set (when

39 The Exim command line (5)

permitted) by an initial “From ” line in the message — see the descriptiecbrofabove — but if-f
is also present, it overrides “From ".

-G
This is a Sendmail option which is ignored by Exim.

-h <numbep
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by countiRgceivedheaders.)

-i
This option, which has the same effect-a§ specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can find no documentation for this option in Solaris
2.4 Sendmaiil, but themailx command in Solaris 2.4 uses it. See atliso

-M <message il <message id ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domainsqueue_smtp_domainsandhold_domainsare ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option callegprod_requires_admin which can be set false to relax this restriction (and also

the same requirement for theg -R, and-S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use-theption as well, or inspect Exim’s main log.

-Mar <message el <address <address ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport <hostname <sequence numbermessage el
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapter 45. This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the connection to the remote host has been authenticated.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCQ <process i¢ <pipe fc>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

40 The Exim command line (5)

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-Mc <message el <message i ...
This option requests Exim to run a delivery attempt on each message in turn, but unlik the
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter 52). Howelar,can be useful when
testing, in order to run a delivery that respects retry times and other options shelidadomains
that are overridden whet is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should «wsevith a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message i <address
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>" (“es” for “edit sender”). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message i <message i ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a resultaftthe
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message i <message i ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by adminis-
trator”. Bounce messages are just discarded. This option can be used only by an admin user.

-Mmad <message e <message @ ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message i <address <address ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be emalil
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message el <message i ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed on the queue.

-Mset <message i
This option is useful only in conjunction witfbe (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such &mnessage_siznd the header variables. THeecipientsvariable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. Sdweatso

41 The Exim command line (5)

-Mt <message ® <message i ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message i
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvc <message idl
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message i
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message i
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is apparently a synonym feom that is accepted by Sendmail, so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It inwlies
Exim goes through many of the motions of delivery — it just doesn't actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with “*>” rather than “=>".

BecauseN discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails wheis set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once-N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

-n
This option is interpreted by Sendmail to mean “no aliasing”. It is ignored by Exim.
-O <data>
This option is interpreted by Sendmail to meahoption . It is ignored by Exim.

-0A <file name
This option is used by Sendmail in conjunction withi to specify an alternative alias file name.
Exim handlesbi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in smyptransport. If > is omitted, the
limitis set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting
process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none obtheptions are present.

If one of the queueing options in the configuration figpuéue_only or queue_only_file for
example) is in effect;odb overrides it ifqueue_only_overrideis set true, which is the default
setting. Ifqueue_only_overrideis set falsesodb has no effect.

42 The Exim command line (5)

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the saroella$ A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like-odb, this option has no effect ifueue_only overrideis false and one of the
gqueueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left on the queue
for later delivery, and the original reception process exits. See chapter 48 for a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous witledf. It is provided for compatibility with Sendmail.

-odq
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed on the queue, and remain there until a subsequent
queue runner process encounters them. There are several configuration options (puebeas
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and alseodqs It always forces queueing.

-odgs
This option is a hybrid betweemdb/-odi and-odg. However, like-odb and-odi, this option has
no effect ifqueue_only_overrideis false and one of the queueing options in the configuration file
is in effect.

When-odqgs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground-ddi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains on the queue until a subsequent queue
runner process encounters it. Because routing was done, Exim knows which messages are waiting
for which hosts, and so a humber of messages for the same host can be sent in a single SMTP
connection. Thequeue_smtp_domainsconfiguration option has the same effect for specific
domains. See also theq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 any other error. This is the defagk option if Exim is called asmail.

-0oem
This is the same a®ee except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the deéalbption, unless Exim is called as
rmail.

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effeetpas

-oew
This option is supported for compatibility with Sendmail, but has the same effeetnas

43 The Exim command line (5)

-0i
This option, which has the same effect -asspecifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called asmail. See alseti.

-oitrue
This option is treated as synonymous wih

-oMa <host address
A number of options starting witkoM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with thbh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The IP address is placed in tlieender_host_addresariable, and the port, if present, §sender_
host_port If both -oMa and-bh are present on the command line, the sender host IP address is
taken from whichever one is last.

-oMaa <name>
See-oMa above for general remarks about #od options. The-oMaa option sets the value of
$sender_host_authenticatéthe authenticator name). See chapter 33 for a discussion of SMTP
authentication. This option can be used witth and-bsto set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See-oMa above for general remarks about ted options. The-oMai option sets the value of
$authenticated_idthe id that was authenticated). This overrides the default value (the caller’s
login id, except with-bh, where there is no default) for messages from local sources. See chapter
33 for a discussion of authenticated ids.

-oMas <address
See -oMa above for general remarks about theM options. The-oMas option sets the
authenticated sender value$authenticated_senddt overrides the sender address that is created
from the caller’s login id for messages from local sources, except whters used, when there is
no default. For bothbh and-bs, an authenticated sender that is specified on a MAIL command
overrides this value. See chapter 33 for a discussion of authenticated senders.

-oMi <interface address
See-oMa above for general remarks about tod/1 options. The-oMi option sets the IP interface
address value. A port number may be included, using the same syntax-adtrThe interface
address is placed $received_ip_addresand the port number, if present$ireceived_port

-oMr <protocol name
See-oMa above for general remarks about #wM options. The-oMr option sets the received
protocol value that is stored i#ireceived_protocolHowever, it does not apply (and is ignored)
when -bh or -bs is used. For-bh, the protocol is forced to one of the standard SMTP protocol
names (see the description $received_protocain section 11.9). Forbs, the protocol is always
“local-" followed by one of those same names. Ho® (batched SMTP) however, the protocol can
be set byoMr.

44 The Exim command line (5)

-oMs <host name
See-oMa above for general remarks about Hod/1 options. The-oMs option sets the sender host
name in$sender_host_nam®&/hen this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See-oMa above for general remarks about Hod/ options. TheoMt option sets the sender ident
value in$sender_identThe default setting for local callers is the login id of the calling process,
except whenbh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction withbd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. WheX is used with-bd, or when-q with
a time is used withoutbd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set byebeive timeoutoption. The
format used for specifying times is described in section 6.15.

-os<time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set bgrtiip_receive_timeoutoption; it
defaults to 5 minutes. The format used for specifying times is described in section 6.15.

-ov
This option has exactly the same effectas

-0X <number or string
This option is relevant only when théd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter 13. WheX is used to start a daemon, no pid file
is written unlessoP is also present to specify a pid file name.

_pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of thperl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

_pS
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of theerl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<svab
For compatibility with Sendmail, this option is equivalent to

-oMr <rval>-oMs <svab

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private ogpins,
and-ps, that refer to embedded Perl. It is therefore impossible to set a protocol vajueos

using this option (but that does not seem a real limitation).

45 The Exim command line (5)

This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for theM, -R, and-S options).

The-q option starts one queue runner process. This scans the queue of waiting messages, and runs
a delivery process for each one in turn. It waits for each delivery process to finish before starting
the next one. A delivery process may not actually do any deliveries if the retry times for the
addresses have not been reached.-tfsgsee below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a timg.viddea
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting th@eue_run_in_order option, but this is not
recommended for normal use.

-g<gflags>
The-q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qg...
An option starting with-qg requests a two-stage queue run. In the first stage, the queue is scanned
as if thequeue_smtp_domain®ption matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

-q[q]i...
If the i flag is present, the queue runner runs delivery processes only for those messages that

haven’t previously been tried. $tands for “initial delivery”.) This can be helpful if you are putting
messages on the queue usiodq and want a queue runner just to process the new messages.

-q[q][i]f...
If onef flag is present, a delivery attempt is forced for each non-frozen message, whereas fwithout

only those non-frozen addresses that have passed their retry times are tried.

-q[q][ilff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[q] [l
Thel (the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-g<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following thq option with a starting message id. For example:

exim -q 0t5C6f-0000c8-00

46 The Exim command line (5)

Messages that arrived earlier thebC6f-0000c8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs-fvbrim that retry data is
respected, and it also differs frofivic in that it counts as a delivery from a queue run. Note that

the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue rvR argks.

-g<gflags><time>
When a time value is present, thg option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
6.15). This form of the-q option is commonly combined with thdxd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

lusr/exim/bin/exim -bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started bywith a time value, but withoutbd, no pid file is written unless one
is explicitly requested by th@P option.

-gR<rsflags> <string>
This option is synonymous wit. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous wits.

-R<rsflags> <string>
The <sflags> may be empty, in which case the white space before the string is optional, unless the
string isf, ff, r, rf, or rff, which are the possible values forsflags>. White space is required if
<rsflags> is not empty.

This option is similar to-g with no time value, that is, it causes Exim to perform a single queue

run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If thersflags> start withr, <string> is interpreted as a regular expression;
otherwise it is a literal string.

If you want to do periodic queue runs for messages with specific recipients, you can cefRbine
with -g and a time value. For example:

exim -q25m -R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified withare applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,
any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> containf or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included wfies present.

The-R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter 40), its default effect is to run Exim with {Reoption, but it can be configured to run

an arbitrary command instead.

a7 The Exim command line (5)

-r
This is a documented (for Sendmail) obsolete alternative namke for

-S<rsflags> <string>
This option acts likeR except that it checks the string against each message’s sender instead of
against the recipients. IR is also set, both conditions must be met for a message to be selected. If
either of the options hdor ff in its flags, the associated action is taken.

-Tqt <times>
This an option that is exclusively for use by the Exim testing suite. It is hot recognized when Exim
is run normally. It allows for the setting up of explicit “queue times” so that various warning/retry
features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard inptit, the
option causes the recipients of the message to be obtained frofo:tiec:, andBcc: header lines

in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and tigec: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the mesesagtibe
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendawdilargument addresses to

those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting theexipéion
addresses_remove_argumentsilse.

If there are anyResent-header lines in the message, Exim extracts recipients froResént-Tq:
Resent-Cg:andResent-Bccheader lines instead of froffo:, Cc:, andBcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an errowhs used in
conjunction withResent-header lines.)

RFC 2822 talks about different setsRésent-header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Receivediines. It is not at all clear howt should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent-lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set Besent-headers to be renamedésRkesent-when a new

set is added. This removes any possible ambiguity.

-ti
This option is exactly equivalent tb-i. It is provided for compatibility with Sendmail.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed intheon_connect_portsoption. See
section 13.4 and chapter 39 for further details.

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

-V
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting dbg_selectordiscards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

48 The Exim command line (5)

-X
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). Itsetghen calling the MTA from
its mail command. Exim ignores this option.

49 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the

standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of file names, in which case Exim uses the first
existing file in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the CONFIGURE_OWNER option (if set). The configuration file must not be world-writeable,
or group-writeable unless its group is the root group or the one specified at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the run time configuration file was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.defaulif CONFIGURE_FILE defines just one file name, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Chapter 7 is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by-beommand line option, which may specify

a single file or a list of files. However, whef is used, Exim gives up its root privilege, unless called
by root (or unless the argument fe€ is identical to the built-in value from CONFIGURE_FILE), or

is listed in the TRUSTED_CONFIG_LIST file and the caller is the Exim user or the user specified in
the CONFIGURE_OWNER settingC is useful mainly for checking the syntax of configuration files
before installing them. No owner or group checks are done on a configuration file specifi€diby

root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary configuration file withGhaption to be

used with root privileges, unless that file is listed in the TRUSTED_CONFIG_LIST file. This locks

out the possibility of testing a configuration usif@ right through message reception and delivery,

even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the us&atauses privilege to be lost. However,

root can test reception and delivery using two separate commands (one to put a message on the queue,
using-odq, and another to do the delivery, ush).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any file
named in a-C command line option must start. In addition, the file name must not contain the
sequence/!./ . There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
name can be used wi@@.

One-off changes to a configuration can be specified byEheommand line option, which defines
and overrides values for macros used inside the configuration file. HoweverClikbe use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is

50 The runtime configuration file (6)

defined inLocal/Makefile the use otD is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option it.ocal/Makefilepermits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST_D __
MACROS defines a colon-separated list of macros which are considered safe-&nhdnlfy supplies

macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp\[A-Za-z0-9_/.-]*$

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined

in Local/Makefile Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained fronuttzne()function. If this file does not exist,

the standard name is tried. This processing occurs for each file name in the list given by
CONFIGURE_FILE orC.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the commests/BDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by the name of the part. The
optional parts are:

» ACL: Access control lists for controlling incoming SMTP mail (see chapter 40).

» authenticators Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter 33).

» routers Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters 15-22).

* transports Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see chapters 24-30).

» retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in
chapter 32.

* rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter 31.

* local_scan Private options for théocal_scan()function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes
in Local/Makefilebefore building Exim. Details of thimcal_scan()facility are given in chapter 42.
Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignorédbte: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

51 The runtime configuration file (6)

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.defaultand add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 40,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.10 onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

.include <file name
.include_if_exists <file name

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. In all cases, an absolute file name is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c\
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <est of line

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’'t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in fbeal_scan retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the

macro name; if there are several macros, the line is scanned for each in turn, in the order in which the

macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro hame may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something
ABCD = <something else

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file
inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
include line.

52 The runtime configuration file (6)

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by usimg instead of=. For example:

MAC = initial value

MAC == updated value

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial value

MAC == MAC and something added

This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden bYpthbemmand line option,
but Exim gives up its root privilege whetD is used, unless called by root or the Exim user. A
definition on the command line using tHB option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS _QUERY = select mailbox from user where \
login="${quote_mysql:$local_part}’;

This can then be used irredirectrouter setting like this:
data = ${lookup mysql{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section 10.5.

6.9 Conditional skips in the configuration file

You can use the directiveddef , .ifndef , .elifdef , .elifndef , .else ,and.endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

ifdef AAA
message_size_limit = 50M
.else

message_size_limit = 100M
.endif

sets a message size limit of 50M if the maéwAAis defined, and 100M otherwise. If there is more
than one macro named on the line, the condition is true if any of them are defined. That is, it is an
“or” condition. To obtain an “and” condition, you need to use nesfbef s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

53 The runtime configuration file (6)

Text following .else and.endif s ignored, and can be used as comment to clarify complicated
nestings.

6.10 Common option syntax

For the main set of options, driver options, dadal_scan(Joptions, each setting is on a line by itself,

and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using tH#P command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysqgl_servers = localhost/users/admin/secret-password
For non-admin users, such options are displayed like this:
mysql_servers = <value not displayable>
If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.11 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_" or “not_" the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or
“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

queue_only
queue_only = true

The following two lines also have the same (opposite) effect:

no_queue_only
gueue_only = false

You can use whichever syntax you prefer.

6.12 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “0x”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,

it is multiplied by 1024x1024. When the values of integer option settings are output, values which are
an exact multiple of 1024 or 1024x1024 are sometimes, but not always, printed using the letters K
and M. The printing style is independent of the actual input format that was used.

6.13 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

54 The runtime configuration file (6)

6.14 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.15 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

S seconds
m minutes
h hours

d days

w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.16 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If

it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignhored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash

\n newline

\r carriage return

\t tab

\ <octal digits> up to 3 octal digits specify one character

\x <hex digits up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.17 Expanded strings

Some strings in the configuration file are subjectesdttmg expansionby which means various parts

of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

55 The runtime configuration file (6)

6.18 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group nhame must either consist entirely of digits, or be a name that
can be looked up using tigetpwnam(pr getgrnam()function, as appropriate.

6.19 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the

same; however, those other than “string list” are subject to particular kinds of interpretation, as

described in chapter 10.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_userssetting in section 6.16 above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1: ::::1
contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The space after the first colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.20 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1; ::11

This facility applies to all lists, with the exception of the listlog_file_path It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysgH.....}}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local_interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.21 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

56 The runtime configuration file (6)

senders = user@domain :

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@domain : : user2@domain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders =:

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.22 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance nanme
<optior>

<optior>
In the following example, the instance nhamidaluser and it is followed by three options settings:

localuser:
driver = accept
check_local_user
transport = local_delivery

For each driver instance, you specify which Exim code module it uses — by the settingdrividye

option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use $netpdriver; if you want to deliver to a local

file you would use th@ppendfiledriver. Each of the drivers is described in detail in its own separate
chapter later in this manual.

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of optiganericand private The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). Thdriver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except thatiieer option must precede any private options,
since these depend on the particular driver. For this reason, it is recommendddviiaialways be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
driver = smtp

57 The runtime configuration file (6)

create an instance of tlentptransport driver whose namersmote_smtpThe same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of tlentptransport, with different options, might be defined thus:

special_smtp:
driver = smtp
port = 1234
command_timeout = 10s

The namesemote_smt@andspecial_smtpvould be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the-bP command line option.

58 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim s/configure.defaulis sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must always come first in the file. The first thing
you'll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of thamary_hostname option. Exim needs to know the official,

fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim usesitteane()system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains = @
domainlist relay_to_domains =
hostlist relay_from_hosts =127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give nhames to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list callédcal_domains this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is calleahost.example mail to
any.user@a.host.examgke expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list caliethy _to_domaingbut the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list calleelay_from_hostsThis list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren't actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt = acl_check_rcpt
acl_smtp_data = acl_check_data

These options specifiiccess Control List¢ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the listechmheck rcptand
acl_check_dataand we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration

59 The default configuration file (7)

does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter 41.

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tIs_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section 4.7. The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter 39.

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section 7.7). The usual SMTP port 25 is often
blocked on end-user networks, so RFC 4409 specifies that message submission should use port 587
instead. However some software (notably Microsoft Outlook) cannot be configured to use port 587
correctly, so these settings also enable the non-standard “smtps” (aka “ssmtp”) port 465 (see section
13.4).

Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not sequalify_domain, the value ofprimary_hostname is used. If you set both of these options,

you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13fhat is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addregseintaster where

domain literals are still useful.

The next configuration line is a kind of trigger guard:
never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is tocmEt up
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified bgever_usersis not, however, the complete list; the build-time configuration

60 The default configuration file (7)

in Local/Makefilehas an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents okever_usersare added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned wilentcallbacks, as defined by RFC 1413 (hence their names):

rfc1413 hosts = *
rfc1413_query_timeout = 5s

These settings cause Exim to make ident callbacks for all incoming SMTP calls. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
all ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with ident calls. This can result in a
timeout instead of an immediate refused connection, leading to delays on starting up an incoming
SMTP session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

Thepercent_hack _domainsoption is also commented out:
percent_hack_domains =

It provides a list of domains for which the “percent hack” is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line
begin acl

61 The default configuration file (7)

and it contains the definitions of two ACLs, calledl_check_rcptand acl_check_datathat were
referenced in the settings @fl_smtp_rcptandacl_smtp_dataabove.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn't actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny message = Restricted characters in address
domains = +local_domains
local_parts ="[.]: **@%!/|]

deny message = Restricted characters in address
domains = I+local_domains
local_parts ="[/[]] : ~*[@%!] : M *N\\A\/
These statements are concerned with local parts that contain any of the characters “@”, “%”, “", “/”,

“|”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used — see thercent_hack_domainsoption). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in théocal _domaingiomain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domailogal_domainsbut in general there may

be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@", “%”, “1”, “/", or “|". If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-nanfewhen applied to someone like the author of Exim, who has

no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it

is used as part of a file name (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local

62 The default configuration file (7)

parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of "@”, “%”, and “I” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the localguastinigster
and the domain is one of those listed in theal _domainsgdomain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domagaindomains
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
guent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, lmadloutscan be used for more verification if required.
Section 40.41 discusses the details of address verification.

accept hosts = +relay_from_hosts
control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in
detail in section 44.1; it causes Exim to fix messages that are deficient in some way, for example,
because they lack Bate: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

accept authenticated = *
control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in 7.7. This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
domains = +local_domains : +relay_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient
This statement requires the recipient address to be verified; if verification fails, the address is rejected.

#deny message = rejected because $sender_host_address \
is in a black list at $dnslist_domain\n\

$dnslist_text

dnslists = black.list.example

#

#warn dnslists = black.list.example

add_header = X-Warning: $sender_host_address is in \

a black list at $dnslist_domain

log_message = found in $dnslist_domain

63 The default configuration file (7)

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

acl_check_data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

#deny malware =*
message = This message contains a virus \
($malware_name).

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

#warn spam = nobody

message = X-Spam_score: $spam_score\n\
X-Spam_score_int: $spam_score_int\n\
X-Spam_bar: $spam_bar\n\

X-Spam_report: $spam_report

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run withbody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept
This final line in the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral

domains = !+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the foroser@[10.9.8.7]. If you uncomment this router, you also need to
uncomment the setting aflow_domain_literals in the main part of the configuration.

dnslookup:
driver = dnslookup
domains =! +local_domains

64 The default configuration file (7)

transport = remote_smtp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_more

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domainsndicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver @nslookupand is specified by thériver option. Do not be confused

by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in tiéver option must be one of the driver modules that is in

the Exim binary.

The dnslookuprouter routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtpransport, as specified by tiwansport option. If the router does not find the domain in

the DNS, no further routers are tried because of nbemore setting, so the address fails and is
bounced.

The ignore_target_hostsoption specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:

driver = redirect

allow_fail

allow_defer

data = ${lookup{$local_part}lsearch{/etc/aliases}}
user = exim

file_transport = address_file

pipe_transport = address_pipe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias ietttialiasedile, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
thedata option is empty, causing the address to be passed to the next router.

/etc/aliasesis a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM_
ALIASES_FILE inLocal/Makefilebefore building Exim.

userforward:
driver = redirect
check_local_user
local_part_suffix = +* : -*
local_part_suffix_optional
file = $home/.forward
allow_filter
no_verify
no_expn
check_ancestor
file_transport = address_file

65 The default configuration file (7)

pipe_transport = address_pipe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. Theck_local usersetting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that follbeck local _usernamely:

local_part_suffix = +*: -*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the varialfliecal_part_suffixThe second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file callidiward in the user's home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the conterftswhrd are interpreted
as redirection data (see chapter 22 for more details).

Traditional.forwardfiles contain just a list of addresses, pipes, or files. Exim supports this by default.
However, ifallow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve

filter”, respectively. User filtering is discussed in the separate document erfiitiads interfaces to

mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

(1) Whether or not a local user hasfarward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read deensird
files at this time.

The setting ofcheck_ancestoiprevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section 22.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For examplé&rfvard
file contains

a.nother@elsewhere.example, /home/spgr/archive
the delivery tdhome/spgr/archivés done by running theddress_filetransport.

localuser:
driver = accept
check_local_user

local_part_suffix = +* : -*

local_part_suffix_optional
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it tddbal_deliverytransport. Otherwise, we

have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do forukerforwardrouter.

66 The default configuration file (7)

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports
One remote transport and four local transports are defined.

remote_smtp:
driver = smtp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

local_delivery:
driver = appendfile
file = /lvar/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add

group = malil

mode = 0660

This appendfiletransport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be set
on the/var/mail directory. Some systems use the alternative approach of running mail deliveries under
a particular group instead of using the sticky bit. The commented options show how this can be done.

Exim adds three headers to the message as it deliveBeiivery-date; Envelope-to:and Return-
path: This action is requested by the three similarly-named options above.

address_pipe:
driver = pipe
return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’.forwardfiles). Thereturn_output option specifies that any output generated by the pipe is to
be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envelope_to_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
the file is not specified in this instanceapipendfile because it comes from thedirectrouter.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.5 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry
In the default configuration, there is just one rule, which applies to all errors:
* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

67 The default configuration file (7)

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at
intervals starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced.

If the retry section is removed from the configuration, or is empty (that is, if no retry rules are
defined), Exim will not retry deliveries. This turns temporary errors into permanent errors.

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by
begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by

begin authenticators
defines mechanisms for the use of the SMTP AUTH command. The default configuration file contains
two commented-out example authenticators which support plaintext username/password authenti-
cation using the standard PLAIN mechanism and the traditional but non-standard LOGIN mechanism,
with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA software.

The example PLAIN authenticator looks like this:

#PLAIN:

driver = plaintext

server_set_id = $auth2

server_prompts =:

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_cipher }

And the example LOGIN authenticator looks like this:

#LOGIN:

driver = plaintext

server_set_id = $authl

server_prompts = <| Username: | Password:

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_cipher }

The server_set_idoption makes Exim remember the authenticated usernarfauthenticated_id

which can be used later in ACLs or routers. Téerver_prompts option configures thelaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. Theserver_advertise_conditionsetting controls when Exim offers authentication to clients;

in the examples, this is only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in 7.1.

Theserver_conditionsetting defines how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examples in 34.

Beware that the sequence of the parameters to PLAIN and LOGIN differ; the usercode and password
are in different positions. 34 covers both.

68 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in many Perl reference books, and also in
Jeffrey Friedl's Mastering Regular Expressionswhich is published by O’'Reilly (see
http://www.oreilly.com/catalog/regex2j.

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE is included in the PCRE distribution, and no further description is included here. The PCRE
functions are called from Exim using the default option settings (that is, with no PCRE options set),
except that the PCRE_CASELESS option is set when the matching is required to be case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c: \\d{3} : *.y.z : ...

The doubling of the backslash is required because of string expansion that precedes interpretation —
see section 11.1 for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are timeatch condition in a string expansion, and theatches condition in an
Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does

not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domains = M\d{3}\\.example
matches the domait23.examplebut it also matchebk23.example.conYou need to use:
domains = "\d{3}\\.example\$

if you wantexampleto be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

69 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion items. Different results can be defined for the cases of lookup success and
failure. See chapter 11, where string expansions are described in detail.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make a lot more sense after you have read chapters 10 and 11.

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domains = ${lookup{$sender_host_address}Isearch{/somef/file}}
domains = Isearch;/some/file

The first uses a string expansion, the result of which must be a domain list. No strings have been
specified for a successful or a failing lookup; the defaults in this case are the looked-up data and an
empty string, respectively. The expansion takes place before the string is processed as a list, and the
file that is searched could contain lines like this:

192.168.3.4: domainl:domain2:...
192.168.1.9: domain3:domain4:...

When the lookup succeeds, the result of the expansion is a list of domains (and possibly other types of
item that are allowed in domain lists).

In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the file. The file could contains lines like
this:

domainl;
domain2;

Any data that follows the keys is not relevant when checking that the domain matches the list item.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192.168.5.6: Isearch;/another/file

If the value of$sender_host_address 192.168.5.6, expansion of the fidbmains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where a lookup is permitted.

9.2 Lookup types
Two different types of data lookup are implemented:

70 File and database lookups (9)

The single-keytype requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the file is searched.

The query-styletype accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

The code for each lookup type is in a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settirgys/EDITMEare:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types
The following single-key lookup types are implemented:

cdlx The given file is searched as a Constant DataBase file, using the key string without a terminat-
ing binary zero. The cdb format is designed for indexed files that are read frequently and never
updated, except by total re-creation. As such, it is particularly suitable for large files containing
aliases or other indexed data referenced by an MTA. Information about cdb can be found in several
places:

http://lwww.pobox.com/~djb/cdb.html
ftp://ftp.corpit.ru/pub/tinycdb/
http://packages.debian.org/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

dbm Calls to DBM library functions are used to extract data from the given DBM file by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See section 4.4 for a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using theexim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of
the types of database that the library supports, and can be useful for accessing DBM files created
by other applications. (For earlier DB versions, DB_HASH is always used.)

dbmnz This is the same adbm except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to usdbmnzrather thardbmif you want to authenticate incoming SMTP calls using the
passwords from Courier'tetc/userdbshadow.ddile. Exim’s utility program for creating DBM

files (exim_dbmbuild includes the zeros by default, but has an option to omit them (see section
50.9).

dsearch The given file must be a directory; this is searched for an entry whose name is the key by
calling thelstat() function. The key may not contain any forward slash characteistdf() suc-
ceeds, the result of the lookup is the name of the entry, which may be a file, directory, symbolic
link, or any other kind of directory entry. An example of how this lookup can be used to support
virtual domains is given in section 47.7.

iplsearch The given file is a text file containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the file must be IP addresses, or IP addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the first
internal colon being interpreted as a key terminator. For example:

71 File and database lookups (9)

1.2.3.4: data for 1.2.3.4
192.168.0.0/16: data for 192.168.0.0/16
"abcd::cdab": data for abcd::cdab
"abcd:abcd::/32" data for abcd:abcd::/32

The key for aniplsearchlookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a “best” match. Apart from the way the keys are
matched, the processing fpisearchis the same as fdgsearch

Warning 1: Unlike most other single-key lookup types, a file of data ifdsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always uset-iplsearchso that the implicit key is the host’s IP
address rather than its name (see section 10.12).

Isearch The given file is a text file that is searched linearly for a line beginning with the search key,
terminated by a colon or white space or the end of the line. The search is case-insensitive; that is,
upper and lower case letters are treated as the same. The first occurrence of the key that is found in
the file is used.

White space between the key and the colon is permitted. The remainder of the line, with leading

and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such a junction. If the data begins with a colon, the key must be terminated by a colon, for

example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files. Note that the keys itsaarchfile are literal
strings. There is no wildcarding of any kind.

In most Isearchfiles, keys are not required to contain colons or # characters, or white space.
However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see section 6.16). An optional colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data patse@hline.

nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key, without
a terminating binary zero. There is a variant caliésD which does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS
aliases; the full map names must be used.

wildlsearch or nwildlsearch These search a file linearly, likisearch but instead of being
interpreted as a literal string, each key in the file may be wildcarded. The difference between these
two lookup types is that fowildlsearch each key in the file is string-expanded before being used,
whereas fonwildlsearch no expansion takes place.

Like Isearch the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by the ys@ of within the pattern. The following forms
of wildcard are recognized:

(1) The string may begin with an asterisk to mean “ends with”. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch

MN\d+\.a\.b\N data for <digits>.a.b

Note the use ofN to disable expansion of the contents of the regular expression. If you are
usingnwildlsearch where the keys are not string-expanded, the equivalent entry is:

72 File and database lookups (9)

MNd+\.a\.b data for <digits>.a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using(-i) at an appropriate point. For example, to make the entire pattern
case-sensitive:

A?-D\d+\.a\l.b data for <digits>.a.b

If the regular expression contains white space or colon characters, you must either quote it
(seelsearchabove), or represent these characters in other ways. For examptan be used

for white space antk3A for a colon. This may be easier than quoting, because if you quote,
you have to escape all the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If a lookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of all the numeric variables
are unset after @)wildlsearchmatch.

(3) Although | cannot see it being of much use, the general matching function that is used to
implement(n)wildlsearchmeans that the string may begin with a lookup name terminated by
a semicolon, and followed by lookup data. For example:

cdb;/some/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as feearch and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data ({@wildlsearchcannot be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section 9.10.

ibase This does a lookup in an InterBase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant callédhpm that permits values from multiple entries to be
returned. A third variant callefflapdnreturns the Distinguished Name of a single entry instead of
any attribute values. See section 9.13.

mysqgl The format of the query is an SQL statement that is passed to a MySQL database. See
section 9.20.

nisplus This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See section 9.19.

oracle The format of the query is an SQL statement that is passed to an Oracle database. See
section 9.20.

passwds a query-style lookup with queries that are just user names. The lookumgegilsnam()

to interrogate the system password data, and on success, the result string is the same as you would
get from anlsearchlookup on a traditionaletc/passwd filethough with* for the password value.

For example:

*:42:42:King Rat:/home/kr:/bin/bash
pgsql The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.20.

73 File and database lookups (9)

» sqlite The format of the query is a file name followed by an SQL statement that is passed to an
SQLite database. See section 9.25.

 testdb This is a lookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

» whoson Whoson(http://whoson.sourceforge.net is a protocol that allows a server to check
whether a particular (dynamically allocated) IP address is currently allocated to a known (trusted)
user and, optionally, to obtain the identity of the said user. For SMTP selWéiesonvas popular
at one time for “POP before SMTP” authentication, but that approach has been superseded by
SMTP authentication. In EximjV/hosoncan be used to implement “POP before SMTP” checking
using ACL statements such as

require condition =\
${lookup whoson {$sender_host_address{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated user,
which is stored in the variablévalue However, in this example, the data$malueis not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a “default value” is a value specified by the administrator that is to be used if a lookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
guery language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If “*” is added to a single-key lookup type (for examplsegarch*) and the initial lookup fails, the key
“*” is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for exampllem*@) then, if the initial

lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn'’t take place because there is no @ in the
key), “*” is looked up. For example,radirectrouter might contain:

data = ${lookup{$local_part@$domain}isearch*@{/etc/mix-aliases}}

Suppose the address that is being processgohé&@eyre.examplé&xim looks up these keys, in this
order:

jane@eyre.example
*@eyre.example
*

The data is taken from whichever key it finds fildbte: In anlsearchfile, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

74 File and database lookups (9)

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst o@0d%)dates.fict.example
and 1984.dates.fict.examplédt is also matched bylates.fict.examp]df that does not appear as a
separate key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see section 10.19).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special prefix (default “*.") are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching is in use.

Partial matching is requested by adding the string “partial-” to the front of the name of a single-key
lookup type, for examplgyartial-dbm . When this is done, the subject key is first looked up unmodi-
fied; if that fails, “*.” is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and “*” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For exampphtial3-Isearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-". If the
subject key is2250.dates.fict.examphkien the following keys are looked up when the minimum
number of non-* components is two:

2250.dates.fict.example
*,2250.dates.fict.example
*.dates.fict.example

* fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of “*." as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domains = partial(.)lsearch;/somef/file

In this example, if the domain ia.b.¢ the sequence of lookupsdsh.c ,.a.b.c ,and.b.c (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domains = partiall()cdb;/somef/file
For this example, if the domainasb.q the sequence of lookupsa$.c ,b.c , andc.

If “partial0” is specified, what happens at the end (when the lookup with just one non-wild com-
ponent has failed, and the original key is shortened right down to the null string) depends on the
prefix:

* If the prefix has zero length, the whole lookup fails.
 If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
“partial0(.)" is for. alone.

75 File and database lookups (9)

» Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With the
default prefix, therefore, the final lookup is for “*” on its own.

» Otherwise, the whole prefix is looked up.

If the search type ends in “*” or “*@"” (see section 9.6 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If “partial0” is specified, adding “*” to the
search type has no effect with the default prefix, because the “*” key is already included in the
sequence of partial lookups. However, there might be a use for lookup types such as
“partialO(.)Isearch*”.

The use of “*” in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.example in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within a single Exim process. There is no inter-process lookup caching facility.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own internal
limit, which can be changed via tl@kup_open_maxoption.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery — for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${quote_<lookup-type>:<string>}
For example, the safest way to write the NIS+ query is
[name="${quote_nisplus:$local_part}"]

See chapter 11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

9.10 More about dnsdb

The dnsdblookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${lookup dnsdb{mx=a.b.example{$value}fail}

76 File and database lookups (9)

If the lookup succeeds, the result is placedbiralue which in this case is used on its own as the
result. If the lookup does not succeed, fad keyword causes &rced expansion failure- see
section 11.4 for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SRV, and TXT, and, when Exim is
compiled with IPv6 support, AAAA (and A6 if that is also configured). If no type is given, TXT is
assumed. When the type is PTR, the data can be an IP address, written as normal; inversion and the
addition ofin-addr.arpa orip6.arpa happens automatically. For example:

${lookup dnsdb{ptr=192.168.4.5}{$value}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces.

For any record type, if multiple records are found (or, for A6 lookups, if a single record leads to
multiple addresses), the data is returned as a concatenation, with newline as the default separator.
The order, of course, depends on the DNS resolver. You can specify a different separator character
between multiple records by putting a right angle-bracket followed immediately by the new separator
at the start of the query. For example:

${lookup dnsdb{>: a=hostl.example}}
It is permitted to specify a space as the separator character. Further white space is ignored.

For TXT records with multiple items of data, only the first item is returned, unless a separator for
them is specified using a comma after the separator character followed immediately by the TXT
record item separator. To concatenate items without a separator, use a semicolon instead.

${lookup dnsdb{>\n,: txt=a.b.example}}
${lookup dnsdb{>\n; txt=a.b.example}}

It is permitted to specify a space as the separator character. Further white space is ignored.

9.11 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each MX record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${lookup dnsdb{mxh=a.b.example}}
In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for “zone NS”). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for a top-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${lookup dnsdb{zns=xxx.quercite.com}}
${lookup dnsdb{zns=xxx.edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers faquercite.com and the second returns the name serversdiar

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains suctoasor co.uk are not going to be on such a list.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section 40.47. Althadriigdbsupports SRV lookups directly,

77 File and database lookups (9)

this is not sufficient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${lookup dnsdb {csa=$sender_helo_name}}

has two space-separated fields: an authorization code and a target host name. The authorization code
can be “Y” for yes, “N” for no, “X" for explicit authorization required but absent, or “?” for
unknown.

9.12 Multiple dnsdb lookups

In the previous sectiongnsdblookups for a single domain are described. However, you can specify a
list of domains or IP addresses in a sindtesdblookup. The list is specified in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${lookup dnsdb{one.domain.com:two.domain.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}
${lookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it as a list.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

The dnsdblookup fails only if all the DNS lookups fail. If there is a temporary DNS error for any of
them, the behaviour is controlled by an optional keyword followed by a comma that may appear
before the record type. The possible keywords are “defer_strict”, “defer_never”, and “defer_lax”.
With “strict” behaviour, any temporary DNS error causes the whole lookup to defer. With “never”
behaviour, a temporary DNS error is ignored, and the behaviour is as if the DNS lookup failed to find
anything. With “lax” behaviour, all the queries are attempted, but a temporary DNS error causes the
whole lookup to defer only if none of the other lookups succeed. The default is “lax”, so the following
lookups are equivalent:

${lookup dnsdb{defer_lax,a=one.host.com:two.host.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

9.13 More about LDAP

The original LDAP implementation came from the University of Michigan; this has become “Open
LDAP”, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in ybocal/Makefile

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1
LDAP_LIB_TYPE=OPENLDAP2
LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumeg@SPENLDAP1which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave slightly differently in the way they handle
the results of a query:

» |daprequires the result to contain just one entry; if there are more, it gives an error.

78 File and database lookups (9)

» |dapdnalso requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

» Idapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For ldap andldapm if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

9.14 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of aredirectrouter one might have this setting:

data = ${lookup Idap \
{Idap://lcn=$local_part,0=University%200f%20Cambridge,\
c=UK?mailbox?base?}}

The URL may begin witHdap orldaps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

With sufficiently modern LDAP libraries, Exim supports forcing TLS over regular LDAP connec-
tions, rather than the SSL-on-connlgeps . See thdédap_start_tls option.

9.15 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
quoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote_ldap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

= \2A
=> \28
=> \29
=> \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLs,
that is, all non-alphanumeric characters except

I$'-._()*+
are converted to their hex values, preceded by a percent sign. For example:

— N~ %

${quote_ldap: a(bc)*, a<yz>; }
yields
%20a%5C28bc%5C29%5C2A%2C%20a%3Cyz%3E%3B%20
Removing the URL quoting, this is (with a leading and a trailing space):
a\28bc\29\2A, a<yz>;

The quote_ldap_dnoperator is designed for use on strings that are part of base DN specifications in
queries. Conceptually, it first converts the string by inserting a backslash in front of any of the
following characters:

,H"\<>

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLSs.
For example:

${quote_ldap_dn: a(bc)*, a<yz>; }

79 File and database lookups (9)

yields
%5C%20a(bc)*%5C%2C%20a%5C%3Cyz%5C%3E%5C%3B%5C%20
Removing the URL quoting, this is (with a trailing space):
\ a(bc)*\, a\<yz\>\,\
There are some further comments about quoting in the section on LDAP authentication below.

9.16 LDAP connections

The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP is in use, via a
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in a query by starting it with

Idap://<hostname>:<port>/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is specified in a query, a list of default servers is taken fromidhp _default_serversconfiguration

option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifying a host
and port is to use a colon separator (RFC 1738). Beclaage default_serversis a colon-separated
list, such colons have to be doubled. For example

Idap_default_servers = Idapl.example.com::145:ldap2.example.com

If Idap_default_serversis unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by Udieyg instead ofldap in LDAP
gueries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, this feature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
Idap_default_servers or inline in the query. In the former case, you can have settings such as

Idap_default_servers = /tmp/ldap.sock : backup.ldap.your.domain

When the pathname is given in the query, you have to escape the slash$-&s fit in with the
LDAP URL syntax. For example:

${lookup Idap {ldapi://%2Ftmp%2Fldap.sock/o=...

When Exim processes an LDAP lookup and finds that the “hostname” is really a pathname, it uses the
Unix domain socket code, even if the query actually specifiap or Idaps . In particular, no
encryption is used for a socket connection. This behaviour means that you can use a sé<pg of
default_serverssuch as in the example above with traditiotddp or Idaps queries, and it will

work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit Idapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more itemsldap_default_servers they are tried. In other words:

* Using a pathname witkdap orldaps forces the use of the Unix domain interface.

» Usingldapi with a host name causes an error.

Using Idapi with no host or path in the query, and no settingldfp_default_servers does
whatever the library does by default.

80 File and database lookups (9)

9.17 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<name=<value> settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

DEREFERENCEet the dereferencing parameter

NETTIME set a timeout for a network operation

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise

REFERRALS set the referrals parameter

SIZE set the limit for the number of entries returned
TIME set the maximum waiting time for a query

The value of the DEREFERENCE parameter must be one of the words “never”, “searching”,
“finding”, or “always”. The value of the REFERRALS parameter must be “follow” (the default) or
“nofollow”. The latter stops the LDAP library from trying to follow referrals issued by the LDAP
server.

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (specified as a humber of seconds) is enforced from the client end for operations that can
be carried out over a network. Specifically, it applies to network connections and calls to the
Idap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK _
TIMEOUT is defined in the LDAP headers (OpenLDAP), or if LDAP_X_OPT_CONNECT_
TIMEOUT is defined in the LDAP headers (Netscape SDK 4.1). A value of zero forces an explicit
setting of “no timeout” for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

Here is an example of an LDAP query in an Exim lookup that uses some of these values. This is a
single line, folded to fit on the page:

${lookup Idap
{user="cn=manager,o=University of Cambridge,c=UK" pass=secret
Idap://lo=University%200f%20Cambridge,c=UK?sn?sub?(cn=foo)}
{$value}fail}

The encoding of spaces #20is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by “hide” to prevent non-admin users from usingofP@ption to see their values.

The auxiliary data items may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
gueries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
guoting that it may contain before passing it LDAP. Apparently some libraries do this for themselves,
but some do not. Removing the URL quoting has two advantages:

» It makes it possible to use the sanmgote_ldap_dnexpansion for USER= DNs as with DNs inside
actual queries.

It permits spaces inside USER= DNs.

For example, a setting such as
USER=cn=${quote_ldap_dn:$1}

should work even i$1 contains spaces.

81 File and database lookups (9)

Expanded data for the PASS= value should be quoted usinguibie expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not allow unquoted spaces. For example:

PASS=${quote:$3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP authenti-
cation. See thidapauth expansion string condition in chapter 11.

9.18 Format of data returned by LDAP

Theldapdnlookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Cambridge, c=UK

The Idap lookup type generates an error if more than one entry matches the search filter, whereas
Idapmpermits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for bédhp andldapm but in the former case you

know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Apart from the escaping, the string within quotes takes the same form as the output when a
single attribute is requested. Specifying no attributes is the same as specifying all of an entry’s
attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute calted has two values, whereadtr2 has only
one value:

Idap:///o=base?attrl?sub?(uid=fred)
valuel.l, valuel.2

Idap:///o=base?attr2?sub?(uid=fred)
value two

Idap:///o=base?attrl,attr2?sub?(uid=fred)
attrl="valuel.l, valuel.2" attr2="value two"

Idap:///o=base??sub?(uid=fred)
objectClass="top" attrl="valuel.l, valuel.2" attr2="value two"

The extract operator in string expansions can be used to pick out individual fields from data that
consists okey=valuepairs. You can make use of Eximbe option to run expansion tests and thereby
check the results of LDAP lookups.

9.19 More about NIS+

NIS+ queries consist of a NISadexed naméollowed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation ofield-name=field-valugpairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mg1456],passwd.org_dir
might return the string

82 File and database lookups (9)

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas
[name=mg1456],passwd.org_dir:gcos

would just return
Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of theuote_nisplusexpansion operator is to double any quote characters within the
text.

9.20 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, and SQLite databases. Queries
for these databases contain SQL statements, so an example might be

${lookup mysqgl{select mailbox from users where id="userx}\
{$valuelfail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsqgl{select home,name from users where id="userx}\
{$value}}

might be
home=/home/userx name="Mister X"

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one field, the value is passed back verbatim, without
a field name, for example:

Mister X

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

9.21 More about MySQL, PostgreSQL, Oracle, and InterBase

If any MySQL, PostgreSQL, Oracle, or InterBase lookups are usedmysxl_servers pgsql_

servers oracle_serversoribase_serversoption (as appropriate) must be set to a colon-separated list

of server information. (For MySQL and PostgreSQL only, the global option need not be set if all
queries contain their own server information — see section 9.22.) Each item in the list is a slash-
separated list of four items: host name, database name, user name, and password. In the case of
Oracle, the host name field is used for the “service name”, and the database name field is not used and
should be empty. For example:

hide oracle_servers = oracle.plc.example//userx/abcdwxyz

Because password data is sensitive, you should always precede the setting with “hide”, to prevent
non-admin users from obtaining the setting via e option. Here is an example where two MySQL
servers are listed:

hide mysqgl_servers = localhost/users/root/secret:\
otherhost/users/root/othersecret

For MySQL and PostgreSQL, a host may be specified mame:<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in
order until a connection is made and a query is successfully processed. The result of a query may be
that no data is found, but that is still a successful query. In other words, the list of servers provides a
backup facility, not a list of different places to look.

83 File and database lookups (9)

Thequote_mysql quote_pgsql andquote_oracleexpansion operators convert newline, tab, carriage

return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backslash itself are escaped with backslashesqiibie_pgsqlexpansion operator, in addition,

escapes the percent and underscore characters. This cannot be done for MySQL because these escapes
are not recognized in contexts where these characters are not special.

9.22 Specifying the server in the query

For MySQL and PostgreSQL lookups (but not currently for Oracle and InterBase), it is possible to
specify a list of servers with an individual query. This is done by starting the query with

servers= serverl:server2:server3:..
Each item in the list may take one of two forms:

(1) If it contains no slashes it is assumed to be just a host name. The appropriate global option
(mysql_serversor pgsql_serverd is searched for a host of the same name, and the remaining
parameters (database, user, password) are taken from there.

(2) Ifit contains any slashes, it is taken as a complete parameter set.

The list of servers is used in exactly the same way as the global list. Once a connection to a server has
happened and a query has been successfully executed, processing of the lookup ceases.

This feature is intended for use in master/slave situations where updates are occurring and you want
to update the master rather than a slave. If the master is in the list as a backup for reading, you might
have a global setting like this:

mysql_servers = slavel/db/name/pw:\
slave2/db/name/pw:\
master/db/name/pw

In an updating lookup, you could then write:
${lookup mysgl{servers=master; UPDATE ...} }

That query would then be sent only to the master server. If, on the other hand, the master is not to be
used for reading, and so is not present in the global option, you can still update it by a query of this
form:

${lookup pgsql{servers=master/db/name/pw; UPDATE ...} }

9.23 Special MySQL features

For MySQL, an empty host name or the use of “localhostimiygsql_serverscauses a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be specified in
parentheses. The full syntax of each itermiysql_serversis:

<hostname::<port>(<socket nanre)/<database/<user/<passworc

Any of the three sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just “localhost”.

No database need be supplied — but if it is absent here, it must be given in the queries.

If a MySQL query is issued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected.

Warning: This can be misleading. If an update does not actually change anything (for example,
setting a field to the value it already has), the result is zero because no rows are affected.

9.24 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail

84 File and database lookups (9)

server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hide pgsql_servers = (/tmp/.s.PGSQL.5432)/db/user/password : ...

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren’t visually confused with the delimiters for the other
server parameters.

If a PostgreSQL query is issued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.25 More about SQLite

SQLite is different to the other SQL lookups because a file name is required in addition to the SQL
qguery. An SQLite database is a single file, and there is no daemon as in the other SQL databases. The
interface to Exim requires the name of the file, as an absolute path, to be given at the start of the
query. It is separated from the query by white space. This means that the path name cannot contain
white space. Here is a lookup expansion example:

${lookup sqlite {/some/thing/sqlitedb \
select name from aliases where id='userx’;}}

In a list, the syntax is similar. For example:

domainlist relay_domains = sqlite;/some/thing/sqlitedb \
select * from relays where ip="$sender_host_address";

The only character affected by theote_sqliteoperator is a single quote, which it doubles.

The SQLite library handles multiple simultaneous accesses to the database internally. Multiple
readers are permitted, but only one process can update at once. Attempts to access the database while
it is being updated are rejected after a timeout period, during which the SQLite library waits for the
lock to be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of
thesqlite_lock_timeoutoption.

85 File and database lookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, thieold_domainsoption contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 40), and as arguments to
expansion conditions such emtch_domain

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but first we cover some general facilities that apply to all four kinds of list.

10.1 Expansion of lists

Each list is expanded as a single string before it is used. The result of expansion must be a list,
possibly containing empty items, which is split up into separate items for matching. By default, colon

is the separator character, but this can be varied if necessary. See sections 6.19 and 6.21 for details of
the list syntax; the second of these discusses the way to specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host,
address, or local part) is not in the list. Other expansion failures cause temporary errors.

If an item in a list is a regular expression, backslashes, dollars and possibly other special characters in
the expression must be protected against misinterpretation by the string expander. The easiest way to
do this is to use theN expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \NNd{8}\w@.*\.baddomain\.example$\N : \
${lookup{$domain}isearch{/badsenders/bydomain}}

The first item is a regular expression that is protected from expansitd bywhereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

10.2 Negated items in lists

ltems in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).

When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) is in the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domainlist relay_domains = la.b.c : *.b.c

matches any domain ending .incexcept fora.b.c Domains that match neitharb.cnor*.b.c do not
match, because the last item in the list is positive. However, if the setting were

domainlist relay_domains = la.b.c

then all domains other thamb.cwould match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extra i@mthe end.

Another way of thinking about positive and negative items in lists is to read the connector as “or”
after a positive item and as “and” after a negative item.

10.3 File names in lists

If an item in a domain, host, address, or local part list is an absolute file name (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the list,
except that further file names are not allowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

86 Domain, host, and address lists (10)

» For domain and host lists, if a # character appears anywhere in a line of the file, it and all following
characters are ignored.

» Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For example:

not#comment@x.y.z # but this is a comment

Putting a file name in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, so if its contents vary over time, Exim’s behaviour changes.

If a file name is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hold_domains = !/etc/nohold-domains
and the file contains the lines

la.b.c
*b.c

thena.b.cis in the set of domains defined yld_domains whereas any domain matchifidp.c
iS not.

10.4 An Isearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about tlseavelylookups

work in lists. Because alsearchfile contains plain text and is scanned sequentially, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in dsearchfile are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns that form part of a list, just give the file name
on its own, without a search type, as described in the previous section. You could also use the
wildlsearchor nwildlsearch but there is no advantage in doing this.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
calledlocal_domaindor all the domains that are handled locally on a host, using a configuration line
such as

domainlist local_domains = localhost:my.dom.example

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domains = +local_domains

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnslookup:
driver = dnslookup
domains =! +local_domains
transport = remote_smtp
no_more

The four kinds of named list are created by configuration lines starting with the wlordainlist,
hostlist, addresslist or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

87 Domain, host, and address lists (10)

hostlist relay_hosts = 192.168.23.0/24 : my.friend.example
addresslist bad_senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domainlist dom1 = first.example : second.example
domainlist dom2 = +dom1 : third.example
domainlist dom3 = fourth.example : +dom2 : fifth.example

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

domainlist doml1 =!a.b
domainlist dom2 = +dom1 : *.b

The second list specifies “either in tdem21 list or *.b”. The first list specifies just “noa.b’, so the
domainx.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist dom2 =la.b:*b
wherex.y does not match. It's best to avoid negation altogether in referenced lists if you can.

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domains = +local_domains

on several of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.6 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALIST = hostl : host2
auth_advertise_hosts = |ALIST

it probably won't do what you want, because that is exactly the same as
auth_advertise_hosts = 'host1 : host2
Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = host1 : host2
auth_advertise_hosts = ! +alist

the negation applies to the whole list, and so that is equivalent to
auth_advertise _hosts = lhostl : 'host2

10.7 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list
is the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

domainlist special_domains =\
${lookup{$sender_host_address}cdb{/some/file}}

88 Domain, host, and address lists (10)

This provides a list of domains that depends only on the sending host’s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending cache todomainlist you can tell Exim to go ahead and cache the result anyway.
For example:

domainlist_cache special_domains = ${lookup{...

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.8 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

 If a pattern consists of a single @ character, it matches the local host name, as sqatiyadng
hostname option (or defaulted). This makes it possible to use the same configuration file on
several different hosts that differ only in their names.

« If a pattern consists of the stri@[] it matches an IP address enclosed in square brackets (as in an
email address that contains a domain literal), but only if that IP address is recognized as local for
email routing purposes. THecal_interfacesand extra_local_interfacesoptions can be used to
control which of a host's several IP addresses are treated as local. In today’s Internet, the use of
domain literals is controversial.

 If a pattern consists of the strir@mx_anyit matches any domain that has an MX record pointing
to the local host or to any host that is listedhiosts _treat as_localThe items@mx_primary
and@mx_secondary are similar, except that the first matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. “Primary” means an MX record with the lowest preference value — there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will notbe expanded by adding the resolver’s default domain. Segquhkfy single andsearch_
parents options of thalnslookuprouter for a discussion of domain widening.

Sometimes you may want to ignore certain IP addresses when using one of these patterns. You can
specify this by following the pattern witfignore= <ip list>, where <4p list> is a list of IP
addresses. These addresses are ignored when processing the pattern (conigaoectitarget
hostsoption on a router). For example:

domains = @mx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host's IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domains = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
an.other.domain : ...

so that the sublist uses semicolons for delimiters. When IPv6 addresses are involved, it is easiest to
change the delimiter for the main list as well:

domains = <? @mx_any/ignore=<;127.0.0.1;::1 ?\
an.other.domain ? ...

89 Domain, host, and address lists (10)

» If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of “*” in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, a domain list item
such agkey.ex matcheslonkey.exas well agipher.key.ex

» If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. Email domains are case-independent, so this regular expression match is
by default case-independent, but you can make it case-dependent by starting ({@awith .
References to descriptions of the syntax of regular expressions are given in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the §Nedatjuence (see
chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

« If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
“dbm;” or “Isearch;”), the remainder of the pattern must be a file name in a suitable format for the
lookup type. For example, for “cdb;” it must be an absolute path:

domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most cases,
the data that is looked up is not used; Exim is interested only in whether or not the key is present in
the file. However, when a lookup is used for tdemains option on a router or alomains
condition in an ACL statement, the data is preserved infitiemain_datavariable and can be
referred to in other router options or other statements in the same ACL.

» Any of the single-key lookup type names may be precedegdstial <n>-, where the 1> is
optional, for example,

domains = partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section 9.7.

» Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used viafithemain_dataexpansion
variable.

» If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, “nisplus;” or “Idap;”), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hold_domains = mysql;select domain from holdlist \
where domain = '$domain’;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for tdemains option on a router, the data is preserved in the
$domain_datavariable and can be referred to in other options.

» If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

Here is an example that uses several different kinds of pattern:

domainlist funny_domains =\
@ :\
lib.unseen.edu : \
*.foundation.fict.example : \
\N/[1-2]\d{3}\.fict\.example$\N : \

90 Domain, host, and address lists (10)

partial-dbm;/opt/data/penguin/book : \
nis;domains.byname : \
nisplus;[name=$domain,status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.9 Host lists

Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identified in two different ways, by name or by IP address. In a host list,
some types of pattern are matched to a host name, and some are matched to an IP address. You need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value

is being used as the key.

10.10 Special host list patterns

If a host list item is the empty string, it matches only when no remote host is involved. This is the case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “*” in a host list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.11 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host &f#ff: <v4address. When such an address is tested against a
host list, it is converted into a traditional IPv4 address first. (Not all operating systems accept IPv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its IP address:

 If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to find the associated IP address(es). Exim
uses the newagetipnodebynamegunction when available, otherwiggthostbyname()lrhis typi-
cally causes a forward DNS lookup of the name. The result is compared with the IP address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a “defer”
response, usually leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section 10.14 below.

» If the pattern is “@”, the primary host name is substituted and used as a domain name, as just
described.

« If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal “dotted-quad” notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an IPv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

» If the pattern is “@[]", it matches the IP address of any IP interface on the local host. For example,
if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

91 Domain, host, and address lists (10)

accept hosts = 127.0.0.1 : 10.45.23.56
accept hosts = @]]

* If the pattern is an IP address followed by a slash and a mask length (for example 10.11.42.0/24), it
is matched against the IP address of the subject host under the given mask. This allows, an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
specifies the number of address bits that must match, starting from the most significant end of the
address.

Note: The mask isnota count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192.168.23.236/31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an IPv6 network:
recipient_unqualified_hosts = 192.168.0.0/16: \
3ffe::ffff::836f::::/48
The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting via a file. For example:
recipient_unqualified_hosts = /opt/exim/unqualnets
could make use of a file containing

172.16.0.0/12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing IPv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

recipient_unqualified_hosts = <; 172.16.0.0/12; \
3ffe:ffff:836f::/48

The separator is changed to semicolon by the leading “<;” at the start of the list.

10.12 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete IP address, the pattern takes this
form:

net-< single-key-search-type< search-data
For example:
hosts_lookup = net-cdb;/hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator insearchfiles. [Colons can in fact be used in keyslgearchfiles by quoting the

keys, but this is a facility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked IP addresses, using patterns of this form:
net< numbep-< single-key-search-type< search-data
For example:
net24-dbm;/networks.db
The IP address of the subject host is masked usmgmbep as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For

92 Domain, host, and address lists (10)

example, if the host's IP address is 192.168.34.6, the key that is looked up for the above example is
“192.168.34.0/24".

When an IPv6 address is converted to a string, dots are normally used instead of colons, so that keys
in Isearchfiles need not contain colons (which terminé&tearchkeys). This was implemented some

time before the ability to quote keys was made availabliséarchfiles. However, the more recently
implementedplsearchfiles do require colons in IPv6 keys (notated using the quoting facility) so as to
distinguish them from IPv4 keys. For this reason, when the lookup tyjpgsisarch IPv6 addresses

are converted using colons and not dots. In all cases, full, unabbreviated IPv6 addresses are always
used.

Ideally, it would be nice to tidy up this anomalous situation by changing to colons in all cases, given
that quoting is now available fdsearch However, this would be an incompatible change that might
break some existing configurations.

Warning: Specifyingnet32-(for an IPv4 address) aret128-(for an IPv6 address) is not the same as
specifying justnet- without a number. In the former case the key strings include the mask value,
whereas in the latter case the IP address is used on its own.

10.13 Host list patterns that match by host name

There are several types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it is used to find an IP address to match against, as described in the section 10.11 above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from IP addresses, matching against host names
is hot as common as matching against IP addresses.

By default, in order to find a host name, Exim first does a reverse DNS lookup; if no name is found in
the DNS, the system functiométhostbyaddr(pr getipnodebyaddr(if available) is tried. The order

in which these lookups are done can be changed by settindndke lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose IP addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one IP address.

There are some options that control what happens if a host name cannot be found. These are
described in section 10.14 below.

As a result of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host's names are checked:

» If a pattern starts with “*" the remainder of the item must match the end of the host name. For
example*.b.c matches all hosts whose names endbia This special simple form is provided
because this is a very common requirement. Other kinds of wildcarding require the use of a regular
expression.

 If the item starts with “*" it is taken to be a regular expression which is matched against the host
name. Host names are case-independent, so this regular expression match is by default case-
independent, but you can make it case-dependent by starting i{®ith . References to descrip-
tions of the syntax of regular expressions are given in chapter 8. For example,

Aalb)\.c\.d$

is a regular expression that matches either of the two hastsl or b.c.d When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do this is\id usenark that

part of the string as non-expandable. For example:

93 Domain, host, and address lists (10)

sender_unqualified_hosts = \N”(a|b)\.c\.d$\N :

Warning: If you want to match a complete host name, you must include®herminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host name is all that is required.

10.14 Behaviour when an IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from a name (see section
10.11), or it may need to look up a host name from an IP address (see section 10.13). In either case,
the behaviour when it fails to find the information it is seeking is the same.

Note: This section applies to permanent lookup failures. It do&sapply to temporary DNS errors,
whose handling is described in the next section.

By default, Exim behaves as if the host does not match the list. This may not always be what you
want to happen. To change Exim’s behaviour, the special iterimelude_unknown or
+ignore_unknown may appear in the list (at top level — they are not recognized in an indirected
file).

» If any item that follows+include_unknown requires information that cannot found, Exim
behaves as if the host does match the list. For example,

host_reject_connection = +include_unknown:*.enemy.ex

rejects connections from any host whose name mattkeemy.ex , and also any hosts whose
name it cannot find.

 If any item that follows+ignore_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.example : \
192.168.4.5

accepts from any host whose namédrisnd.exampleand from 192.168.4.5, whether or not its host
name can be found. Withotdignore_unknown , if no name can be found for 192.168.4.5, it is
rejected.

Both +include_unknown and +ignore_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

10.15 Temporary DNS errors when looking up host information

A temporary DNS lookup failure normally causes a defer action (except wihenagain_means_
nonexist converts it into a permanent error). However, host lists can inchigieore_defer and
+include_defer , analagous terignore_unknown and+include_unknown , as described

in the previous section. These options should be used with care, probably only in non-critical host
lists such as whitelists.

10.16 Host list patterns for single-key lookups by host name
If a pattern is of the form

<single-key-search-type<search-data
for example

dbm;/host/accept/list

a single-key lookup is performed, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual data that is looked up is not used.

Reminder: With this kind of pattern, you must have hasimesas keys in the file, not IP addresses.
If you want to do lookups based on IP addresses, you must precede the search type with “net-" (see

94 Domain, host, and address lists (10)

section 10.12). There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same file.

10.17 Host list patterns for query-style lookups
If a pattern is of the form
<query-style-search-type<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual data that is looked up is
not used. The variableégsender_host_addres®id $sender_host_nanean be used in the query. For
example:

hosts_lookup = pgsql;\
select ip from hostlist where ip="$sender_host_address'

The value offsender_host_addrefs an IPv6 address contains colons. You can usagexpansion
item to change this if you need to. If you want to use masked IP addresses in database queries, you
can use thenask expansion operator.

If the query contains a reference$eender_host_namExim automatically looks up the host name if
has not already done so. (See section 10.13 for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was precedeateby . This is no longer the case. For backwards
compatibility, net- is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookupgt- is important. See section 10.12.)

10.18 Mixing wildcarded host names and addresses in host lists

If you have name lookups or wildcarded host names and IP addresses in the same host list, you should
normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend.example

The reason for this lies in the left-to-right way that Exim processes lists. It can test IP addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if it
cannot find a host name to compare with the pattern. If the above list is given in the opposite order,
theacceptstatement fails for a host whose name cannot be found, even if its IP address is 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address, you can rewrite the
ACL like this:

accept hosts = *.friend.example
accept hosts = 10.9.8.7

If the firstacceptfails, Exim goes on to try the second one. See chapter 40 for details of ACLs.

10.19 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by provid-
ing an empty item in an address list. For example, you can set up a router to process bounce messages
by using this option setting:

senders =:

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds $d@rder_address empty.

Non-empty items in an address list can be straightforward email addresses. For example:
senders = jpc@askone.example : hs@anacreon.example

95 Domain, host, and address lists (10)

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not a regular
expression and does not begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to a named list, or be a lookup:

deny senders = *@*.spamming.site:\
*@+hostile_domains:\
bozo@partial-Isearch;/list/of/dodgy/sites:\
*@dbm;/bad/domains.db

If a local part that begins with an exclamation mark is required, it has to be specified using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, as is standard in
lists.

If a non-empty pattern that is not a regular expression or a lookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is
the same as @ preceded the pattern. For example:

deny senders = enemy.domain : *.enemy.domain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

» If (after expansion) a pattern starts with “*", a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
is to uséN to mark that part of the string as non-expandable. For example:

deny senders = \N”.*this.*@example\.com$\N : \
\NM\d{8}.+@spamhaus.example$\N : ...

The\N sequences are removed by the expansion, so these items do indeed start with “*” by the
time they are being interpreted as address patterns.

* Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/blocked.senders : \
mysql;select address from blocked where \
address='${quote_mysql:$sender_address}'

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the complete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

Partial matching for single-key lookups (section 9.7) cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section 9.6, but this is useful only for the “*@” type of default. For example, with this
lookup:

accept senders = Isearch*@;/somef/file
the file could contains lines like this:

userl@domainl.example
*@domain2.example

and for the sender addregsmrod @jaeger.exampléhe sequence of keys that are tried is:

nimrod@jaeger.example
*@jaeger.example
*

96 Domain, host, and address lists (10)

Warning 1: Do not include a line keyed by “*" in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients = dbm*@;/some/file
deny recipients = *@dbm;/some/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject
address is empty, a match against any of these pattern types always fails.

o If a pattern starts with “@@” followed by a single-key lookup item (for example,
@ @Isearch;/some/file), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by “*” (see
section 9.6). The local part patterns that are looked up can be regular expressions or begin with
“** or even be further lookups. They may also be independently negated. For example, with

deny senders = @ @dbm;/etc/reject-by-domain

the data from which the DBM file is built could contain lines like
baddomain.com: !postmaster : *

to reject all senders excgmbstmasterfrom that domain.

If a local part that actually begins with an exclamation mark is required, it has to be specified using
a regular expression. llsearchfiles, an entry may be split over several lines by indenting the
second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colons is ignored. For example:

aol.com: spammerl : spammer2 : N[0-9]+$:
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammerl : spammer 2 : >*
Xyz.com: spammer3 : >*
*: Md{8}$

in a file that was searched wit®@@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this feature
costs another lookup each time a chain is followed, but the effort needed to maintain the data is
reduced.

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fifty items long.

* The @@4<ookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

Warning: There is an important difference between the address list items in these two examples:
senders = +my_list
senders = *@+my_list

97 Domain, host, and address lists (10)

In the first one;my_list is a named address list, whereas in the second example it is a named
domain list.

10.20 Case of letters in address lists

Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (samseful_local_partfor how Exim deals with this when routing addresses).
However, RFC 2505 Anti-Spam Recommendations for SMTP MTAgggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the “@@" mechanism, can be in any case. However, the keys in files that are looked
up by a search type other thésearch(which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
“+caseful”, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after “+caseful” has
been seen.

10.21 Local part lists

Case-sensitivity in local part lists is handled in the same way as for address lists, as just described.
The “+caseful” item can be used if required. In a setting of ldwal_parts option in a router with
caseful_local_partset false, the subject is lowercased and the matching is initially case-insensitive.
In this case, “+caseful” will restore case-sensitive matching in the local part list, but not elsewhere in
the router. Ifcaseful_local_partis set true in a router, matching in thacal_parts option is case-
sensitive from the start.

If a local part list is indirected to a file (see section 10.3), comments are handled in the same way as
address lists — they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host@ @[], @mx_any @mx_primary , and @mx_secondary) are not
recognized. Refer to section 10.8 for details of the other available item types.

98 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim’s run time configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string that is
interpreted and replaced as described below in section 11.5 onwards. Backslash is used as an escape
character, as described in the following section.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itself. If the string appears in quotes in the configuration file, two backslashes are
required because the quotes themselves cause interpretation of backslashes when the string is read in
(see section 6.16).

A portion of the string can specified as non-expandable by placing it between two occurrekides of
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \NMd{8}[a-z]@some\.site\.example$\N

On encountering the fir§N , the expander copies subsequent characters without interpretation until it
reaches the neXN or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters “n”, “r”, or “t” in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by “x” and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up
strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with 4be option. This takes the command argu-
ments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables shidkaahsparthave no value.
Nevertheless thebe option can be useful for checking out file and database lookups, and the use of
expansion operators suchsggsubstr andnhash

Exim gives up its root privilege when it is called with tHee option, and instead runs under the uid
and gid it was called with, to prevent users from usibg for reading files to which they do not have
access.

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. Them option is like -be except that it is followed by a file
name. The file is read as a message before doing the test expansions. For example:

exim -bem /tmp/test. message '$h_subject:'

The-Mset option is used in conjunction witkbe and is followed by an Exim message identifier. For
example:

exim -be -Mset 1GrA8W-0004WS-LQ '$recipients'

99 String expansions (11)

This loads the message from Exim’s spool before doing the test expansions, and is therefore restricted
to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative “true” and “false”
substrings, enclosed in brace characters (which are sometimes called “curly brackets”). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a “false” substring, the word “fail” is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is called “forced expansion
failure”, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve read-
ability. Warning : Within braces, white space is significant.

$<variable name or ${<variable name}
Substitute the contents of the named variable, for example:

$local_part
${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using braces) is available only for variables; it dowd apply to message headers. The
names of the variables are given in section 11.9 below. If the name of a non-existent variable is
given, the expansion fails.

${<op>:<string>}
The string is first itself expanded, and then the operation specifiecbpy s applied to it. For
example:

${lc:$local_part}

The string starts with the first character after the colon, which may be leading white space. A list

of operators is given in section 11.6 below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

$bheader <header name: or $bh_<header name:
This item inserts “basic” header lines. It is described witth#agler expansion item below.

${dIfunc{<file>H <functior-}{ <arg>}{ <arg>}...}
This expansion dynamically loads and then calls a locally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile Once loaded, Exim remembers the dynamically loaded object so that it
doesn't reload the same obiject file in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function. When compiling a local function that
is to be called in this waypcal_scan.tshould be included. The Exim variables and functions that
are defined by that API are also available for dynamically loaded functions. The function itself
must have the following type:

int dlfunction(uschar **yield, int argc, uschar *argv[])
Whereuschar is a typedef forunsigned char in local_scan.h The function should return
one of the following values:

100 String expansions (11)

OK Success. The string that is placed in the varialiddd is put into the expanded string that is
being built.

FAIL : A non-forced expansion failure occurs, with the error message takenyiedif it is set.

FAIL_FORCED A forced expansion failure occurs, with the error message takenyfelhif it is
set.

ERRORSame a&AIL , except that a panic log entry is written.

When compiling a function that is to be used in this way with gcc, you need teshdded to the
gcc command. Also, in the Exim build-time configuration, you must aggort-dynamic to
EXTRALIBS.

${extract{<key>}{ <string1>H <string2>} <string3>}}
The key and string1> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not consist entirely of digits. The
expanded string1> must be of the form:

<key> = <value> <key2 = <value2 ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.16. The expstnidegd>=is searched

for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwisteing3> is used. During the
expansion of string2> the variablebvaluecontains the value that has been extracted. Afterwards,

it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions are identical, and yield “2001":

${extract{gid}{uid=1984 gid=2001}}
${extract{gid{uid=1984 gid=2001}{$value}}

Instead of {sstring3>} the word “fail” (not in curly brackets) can appear, for example:
${extract{Z}{A=... B=...}{$value} fail }

This forces an expansion failure (see section 11.4%tfrg2>} must be present for “fail” to be
recognized.

${extract{<number} <separators}{ <string1>K <string2>}{ <string3>}}
The <number argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored. This is what distinguishes this forraxtfact from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<string1> the field whose number is given as the first argument. You ca$ueeein <string2>
orfail instead of string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The first field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion efring3>, or the empty string if string3> is

not provided. For example:

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}
yields “42”, and

${extract{-4{:Hx:42:99:& Maliler::/bin/bash}}
yields “99”. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

101 String expansions (11)

${filter{ <string>}{ <conditiorr}}
After expansion, string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. For each item in this list, its value is plaggem and then the
condition is evaluated. If the condition is trktemis added to the output as an item in a new list;
if the condition is false, the item is discarded. The separator used for the output list is the same as
the one used for the input, but a separator setting is not included in the output. For example:

$ffilter{a:b:cH{'eq{$item}{b}}
yieldsa:c . At the end of the expansion, the valueRifemis restored to what it was before. See
also themap andreduce expansion items.

${hash{<string 1>} <string2>} <string3>}}
This is a textual hashing function, and was the first to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call themand >. If you are using
fixed values for these numbers, that is, #tkng1> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${hash_<n>_<m>:<string>}

The second number is optional (in both notations).r$<s greater than or equal to the length of

the string, the expansion item returns the string. Otherwise it computes a new string of lamgth <
by applying a hashing function to the string. The new string consists of characters taken from the
first <m> characters of the string

abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

If <m> is not present the value 26 is used, so that only lower case letters appear. For example:

$hash{3{monty}} yields jmg
$hash{5{monty}} yields monty
$hash{4}{62{monty python}} yields fbWx

$header <header name: or $h_<header name
$bheader <header name: or $bh_<header name:
$rheader_<header name or $rh_<header nane:
Substitute the contents of the named message header line, for example

$header_reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference betweerheader, bheader, andheaderis in the way the data in the header line is
interpreted.

» rheader gives the original “raw” content of the header line, with no processing at all, and
without the removal of leading and trailing white space.

» bheaderremoves leading and trailing white space, and then decodes base64 or quoted-printable
MIME “words” within the header text, but does no character set translation. If decoding of what
looks superficially like a MIME “word” fails, the raw string is returned. If decoding produces a
binary zero character, it is replaced by a question mark — this is what Exim does for binary zeros
that are actually received in header lines.

» headertries to translate the string as decodedbgaderto a standard character set. This is an
attempt to produce the same string as would be displayed on a user's MUA. If translation fails,
the bheader string is returned. Translation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONV in a system
Makefile or inLocal/Makefile

In a filter file, the target character set foeader can be specified by a command of the following
form:

102 String expansions (11)

headers charset "UTF-8"

This command affects all referencesfio_(or $header) expansions in subsequently obeyed filter
commands. In the absence of this command, the target character set in a filter is taken from the
setting of theheaders_charsetoption in the runtime configuration. The value of this option
defaults to the value of HEADERS_ CHARSET liocal/Makefile The ultimate default is ISO-
8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly bratketstterminate header names,

and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an ACL
statement or by a system filter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLs that are obeyed before the
DATA ACL, because the header structure is not set up until the message is received. Header lines
that are added in a RCPT ACL (for example) are saved until the message’s incoming header lines
are available, at which point they are added. When a DATA ACL is running, however, header lines
added by earlier ACLs are visible.

Upper case and lower case letters are synonymous in header names. If the following character is

white space, the terminating colon may be omitted, but this is not recommended, because you may

then forget it when it is needed. When white space terminates the header name, it is included in the

expanded string. If the message does not contain the given header, the expansion item is replaced
by an empty string. (See thaef condition in section 11.7 for a means of testing for the existence

of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. Unlessader is being used, leading and

trailing white space is removed from each header before concatenation, and a completely empty
header is ignored. A newline character is then inserted between non-empty headers, but there is no
newline at the very end. For tHeeader and bheader expansion, for those headers that contain

lists of addresses, a comma is also inserted at the junctions between headers. This does not happen
for therheader expansion.

${hmac{<hashname}{ <secret}{ <string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from
${md5:secret_text...} or ${shal:secret_text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 alone. The hash name must expand to eititiéror shal at present. For example:

${hmac{md5}{somesecreti{$primary_hostname $tod_log}}
For the hostnammail.example.comand time 2002-10-17 11:30:59, this produces:
dd97e3ba5d1a61b5006108f8c8252953

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheeLei2thahw
In a router or a transport you could then have:

headers_add =\
X-Spam-Scanned: ${primary_hostname} ${message_exim_id} \
${hmac{md5{SPAMSCAN_SECRET}
{${primary_hostname},${message_exim_id},$h_message-id:}}

103 String expansions (11)

Then given a message, you can check where it was scanned by looking>&Sihem-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomputing
the authentication code from the host name, message ID aMéabgage-idheader line. This can

be done using Exim’sbe option, or by other means, for example by using lineac_md5_hex()
function in Perl.

${if <conditior> {<string1>H <string2>}}
If <conditior® is true, sstring1l> is expanded and replaces the whole item; otherwigeng2> is
used. The available conditions are described in section 11.7 below. For example:

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word “fail” may be present instead of the second string (without
any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section 11.4).

If both strings are omitted, the result is the stringe if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$acl_m4}3}{true}{false}}
you can use
condition = ${if >{$acl_m4}3}}

${length{<string 1>} <string2>}}
Thelength item is used to extract the initial portion of a string. Both strings are expanded, and the
first one must yield a numberns, say. If you are using a fixed value for the number, that is, if
<string1> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${length_<n>:<string>}

The result of this item is either the firshs characters or the whole ostring2>, whichever is the
shorter. Do not confudength with strlen, which gives the length of a string.

${lookup{<key>} <search type {<file>} {<string1>} {<string2>}}
This is the first of one of two different types of lookup item, which are both described in the next
item.

${lookup <search type {<query>} {<string1>} {<string2>}}
The two forms of lookup item specify data lookups in files and databases, as discussed in chapter
9. The first form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and qquery> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for thenanualrouterouter, or any other place where white space is significant,
the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter files
may be locked out by the system administrator.

If the lookup succeeds,sttring1> is expanded and replaces the entire item. During its expansion,
the variable$valuecontains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup failsfring2> is expanded and
replaces the entire item. If 8tring2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up a default value when the original lookup fails.

If a nested lookup is used as part afting1>, $valuecontains the data for the outer lookup while
the parameters of the second lookup are expanded, and also strileg2> of the second lookup

is expanded, should the second lookup fail. Instead str{rg2>} the word “fail” can appear, and

in this case, if the lookup fails, the entire expansion is forced to fail (see section 11.4). If both
{<string1>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

104 String expansions (11)

For single-key lookups, the string “partial” is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 9.6 and 9.7 for details).

If a partial search is used, the variablgsand$2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:
${lookup {postmaster} Isearch {/etc/aliases} {$value}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${lookup nisplus {{[name=$local_part],passwd.org_dir:gcos} \
{$value}lfail}

${map{<string1>} <string2>}}
After expansion, string1> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. For each item in this list, its value is pla&item and then
<string2> is expanded and added to the output as an item in a new list. The separator used for the
output list is the same as the one used for the input, but a separator setting is not included in the
output. For example:

${map{a:b:c}{[$item]}} ${map{<- x-y-z}{($item)}}

expands tda]:[b]:[c] (X)-(y)-(2) . At the end of the expansion, the value$ifemis
restored to what it was before. See alsditter andreduce expansion items.

${nhash{<string1>} <string2>}{ <string3>}}
The three strings are expanded; the first two must yield numbers. Call therand €n>. If you
are using fixed values for these numbers, that isstfingl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${nhash_<n>_ <m>:<string>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range Of=-1. Otherwise, the string is processed by a div/imod hash function that
returns two numbers, separated by a slash, in the rangesr>t@ end O to «>-1, respectively.

For example,

${nhash{8}{64}{supercalifragilisticexpialidocious}}
returns the string “6/33".

${perl{ <subroutine{ <arg>}{ <arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number per-
mitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit “fail” on a lookup item. The
return value is a scalar. Whatever you return is evaluated in a scalar context. For example, if you
return the name of a Perl vector, the return value is the size of the vector, not its contents.

If the subroutine exits by calling Perldie function, the expansion fails with the error message
that was passed the. More details of the embedded Perl facility are given in chapter 12.

Theredirectrouter has an option callgdrbid_filter_perl which locks out the use of this expan-
sion item in filter files.

${prvs{<address}{ <secret}{ <keynumber}}
The first argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typically used witletine_path option on an

105 String expansions (11)

smtptransport as part of a bounce address tag validation (BATV) scheme. For more discussion and
an example, see section 40.48.

${prvscheck{<address} <secret} <string>}}
This expansion item is the complement of thess item. It is used for checking prvs-signed
addresses. If the expansion of the first argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the first argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the v&padebeck
addressand$prvscheck_keynumespectively.

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in
the variablebprvscheck_resylivhich is empty for failure or “1” for success.

The third argument is optional; if it is missing, it defaults to an empty string. This argument is now
expanded. If the result is an empty string, the result of the expansion is the decoded version of the
address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the expan-
sion is complete, onlyprvscheck_resultemains set. For more discussion and an example, see
section 40.48.

${readfile{<file name-}{ <eol string>}}
The file name and end-of-line string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the file. If you want this, you must wrap the item irxgpand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option callefbrbid_filter_readfile which locks out the use of this
expansion item in filter files.

${readsocketkname-H <request} <timeout-} <eol string>}{ <fail string>}}
This item inserts data from a Unix domain or Internet socket into the expanded string. The
minimal way of using it uses just two arguments, as in these examples:

${readsocket{/socket/name}{request string}}
${readsocket{inet:some.host:1234Krequest string}}

For a Unix domain socket, the first substring must be the path to the socket. For an Internet socket,
the first substring must containet: followed by a host name or IP address, followed by a colon
and a port, which can be a number or the name of a TCP pdetarservicesAn IP address may
optionally be enclosed in square brackets. This is best for IPv6 addresses. For example:

${readsocket{inet:[::1]:1234}{request string}}

Only a single host name may be given, but if looking it up yields more than one IP address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a connec-
tion, writes the request string (unless it is an empty string) and reads from the socket until an
end-of-file is read. A timeout of 5 seconds is applied. Additional, optional arguments extend what
can be done. Firstly, you can vary the timeout. For example:

${readsocket{/socket/name}{request string{3s}}

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as foreadfile (see above). This example turns them into spaces:

${readsocket{inet:127.0.0.1:3294}{request string{3sK }}

As with all expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

» Failure to create a socket file descriptor;

106 String expansions (11)

* Failure to connect the socket;
 Failure to write the request string;
« Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth sub-
string, it is expanded and used when any of the above errors occurs. For example:

${readsocket{/socket/name}{request stringH{3sH{\n}\
{socket failure}}

You can test for the existence of a Unix domain socket by wrapping this expansi®fif in

exists , but there is a race condition between that test and the actual opening of the socket, so it
is safer to use the fifth argument if you want to be absolutely sure of avoiding an expansion error
for a non-existent Unix domain socket, or a failure to connect to an Internet socket.

Theredirectrouter has an option calledrbid_filter_readsocket which locks out the use of this
expansion item in filter files.

${reduce{<string1>}{< string2>}{ <string3>}}
This operation reduces a list to a single, scalar string. After expanstang&> is interpreted as a
list, colon-separated by default, but the separator can be changed in the usual waysffimg2><
is expanded and assigned to thealue variable. After this, each item in thestingl> list is
assigned t&itemin turn, and string3> is expanded for each of them. The result of that expansion
is assigned t&valuebefore the next iteration. When the end of the list is reached, the final value
of $valueis added to the expansion output. Tleeluce expansion item can be used in a number of
ways. For example, to add up a list of numbers:

${reduce {<, 1,2,30}{${eval:$value+sitem}}}
The result of that expansion would ®eThe maximum of a list of humbers can be found:
${reduce {3:0:9:4:6 HOH{${if >{$item}{$value}{$item}{$Svalue}}}}

At the end of areduce expansion, the values &itemand$valueare restored to what they were
before. See also ttidter andmap expansion items.

$rheader_<header name or $rh_<header nane:
This item inserts “raw” header lines. It is described withnibader expansion item above.

${run{ <command <args>H <string1>} <string2>}}
The command and its arguments are first expanded separately, and then the command is run in a
separate process, but under the same uid and gid. As in other command executions from Exim, a
shell is not used by default. If you want a shell, you must explicitly code it.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same file descriptor. If the command succeeds (gives a zero returnstoag)><is
expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variablgvalue If the command fails, string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable$value

If <string2> is absent, the result is empty. Alternativelgteng2> can be the word “fail” (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted, the
result is contents of the standard output/error on success, and nothing on failure.

The return code from the command is put in the varidslenrc, and this remains set afterwards,
so in a filter file you can do things like this:

if "${run{x y z}{}}$runrc" is 1 then ...
elif $runrc is 2 then ...

endif
If execution of the command fails (for example, the command does not exist), the return code is
127 — the same code that shells use for non-existent commands.

107 String expansions (11)

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to s@tunrc by the expansion of one option, and use it in another.

Theredirectrouter has an option callgdrbid_filter_run which locks out the use of this expan-
sion item in filter files.

${sg{<subject}{ <regex}{ <replacement}}
This item works like Perl's substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns the
modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example:

${sg{abcdefabcdefi{abc}{xyz}}

yields “xyzdefxyzdef’. Because all three arguments are expanded before use, if any $ or \ charac-
ters are required in the regular expression or in the substitution string, they have to be escaped. For
example:

${sg{abcdefH"(...)(...)\$}{\$2\$1}}
yields “defabc”, and
${sg{1=A 4=D 3=C}H{\N(\d+)=\NKK\$1=}}

yields “K1=A K4=D K3=C". Note the use ofN to protect the contents of the regular expression
from string expansion.

${substr{<string1>}H <string2>} <string3>}}
The three strings are expanded; the first two must yield numbers. Call therared <n>. If you
are using fixed values for these numbers, that isstfingl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${substr_<n>_<m>:<string>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

Thesubstr item can be used to extract more general substringslémayth. The first number, r>,
is a starting offset, andw®> is the length required. For example

${substr{3{2S$local_part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string, starting
from the given offset. The first character in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for example,

${substr{-54{2}{1234567}}

yields “34”. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of over-
shoot. Thus, for example,

${substr{-5}{2112}}
yields an empty string, but

${substr{-3{2112}}
yields “1".

When the second number is omitted franbstr, the remainder of the string is taken if the offset
is positive. If it is negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length, as in these semantically identical examples:

108 String expansions (11)

${substr_-1:abcde}
${substr{-1}{abcde}}

yields all but the last character of the string, that is, “abcd”.

${tr{ <subject}{ <characters}{ <replacements}}
This item does single-character translation on its subject string. The second argument is a list of
characters to be translated in the subject string. Each matching character is replaced by the corre-
sponding character from the replacement list. For example

${tr{abcdeal{ac}{13}}

yields1b3del . If there are duplicates in the second character string, the last occurrence is used. If
the third string is shorter than the second, its last character is replicated. However, if it is empty, no
translation takes place.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the “operator” notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

${addressx<string>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

${addressessstring>}
The string (after expansion) is interpreted as a list of addresses in RFC 2822 format, such as can be
found in aTo: or Cc: header line. The operative addregscél-part@domaiip is extracted from
each item, and the result of the expansion is a colon-separated list, with appropriate doubling of
colons should any happen to be present in the email addresses. Syntactically invalid RFC2822
address items are omitted from the output.

It is possible to specify a character other than colon for the output separator by starting the string
with > followed by the new separator character. For example:

${addresses:>& Chief <ceo@up.stairs>, sec@base.ment (dogsbody)}

expands toceo@up.stairs&sec@base.ment . Compare theaddress (singular) expansion
item, which extracts the working address from a single RFC2822 address. Sitethenap, and
reduceitems for ways of processing lists.

${base62«digits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identifiers (because those systems do not
have case-sensitive file names), base 36 is used by this operator, despite itSlagmaust to be
absolutely clear: this isot base64 encoding.

${base62d<base-62 digits}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identifiers, base-36 digits. The number is converted to
decimal and output as a string.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escapesstring>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called “8-bit characters”)
count as printing or not is controlled by iwént_topbitchars option.

109 String expansions (11)

${eval:<string>} and${evall0<string>}
These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming
language):

highest: not (~), negate (-)
multiply (*), divide (/), remainder (%)
plus (+), minus (-)
shift-left (<<), shift-right (>>)
and (&)
xor (M)
lowest: or (])

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with “0”) or hexadecimal (starting with “0x”).

For evallQ all numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by “K” or “M” to multiply it by 1024 or 1024*1024, respectively.
Negative numbers are supported. The result of the computation is a decimal representation of the
answer (without “K” or “M”). For example:

${eval:1+1} yields 2
${eval:1+2*3} yields 7
${eval:(1+2)*3} yields 9
${eval:2+42%5} yields 4
${eval:0xc&5} yields 4
${eval:0xc|5} yields 13
${eval:0xc"5} yields 9
${eval:0xc>>1} yields 6
${eval:0xc<<1} yields 24
${eval:~255&0x1234} yields 4608
${eval:-(~255&0x1234)} yields -4608

As a more realistic example, in an ACL you might have

deny message = Too many bad recipients
condition = \
${if and { \
{>{$rcpt_count}{10}} \
\

. \
{$recipients_count} \
{${eval:$rcpt_count/2}} \

\

}
HyesHno}}

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in a valid recipient.

${expand=<string>}
Theexpandoperator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file{$value}}}
first looks up a string in a file while expanding the operandeigpand and then re-expands what
it has found.

110 String expansions (11)

${from_utf8: <string>}
The world is slowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an 1ISO-8859-1 string. UTF-8 code
values greater than 255 are converted to underscores. The input must be a valid UTF-8 string. If it
is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and ISO-8859-1 (also

known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code

values greater than 127, whereas 1SO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes translation from UTF-8 to 1ISO-8859-1 straightforward.

${hash_<n> <m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${hash{<n>H<m>}<string>}}
See the description of the genetash item above for details. The abbreviatibncan be used
whenhashis used as an operator.

${hex2b64<hexstring-}
This operator converts a hex string into one that is base64 encoded. This can be useful for

processing the output of the MD5 and SHA-1 hashing functions.

${lc:<string>}
This forces the letters in the string into lower-case, for example:

${lc:$local_part}

${length_<numbep:<string>}
The length operator is a simpler interface to thength function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is the

same as
${length{<number>}{<string>}}

See the description of the genelahgth item above for details. Note thingth is not the same as
strlen. The abbreviatioh can be used whdangth is used as an operator.

${local_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the

string does not parse successfully, the result is empty.

${mask:<IP address/<bit count}
If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator con-
verts the IP address to binary, masks off the least significant bits according to the bit count, and
converts the result back to text, with mask appended. For example,

${mask:10.111.131.206/28}

returns the string “10.111.131.192/28". Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses dots to separate com-
ponents instead of colons, because colon terminates a key string in Isearch files. So, for example,

${mask:3ffe:ffff:836f:0a00:000a:0800:200a:c031/99}
returns the string
3ffe.ffff.836f.0a00.000a.0800.2000.0000/99
Letters in IPv6 addresses are always output in lower case.

111 String expansions (11)

${md5:<string>}
The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit hexa-
decimal number, in which any letters are in lower case.

${nhash_<n>_<m>:<string>}
The nhash operator is a simpler interface to the numeric hashing function that can be used when
the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect is the same as

${nhash{<n>}<m>}{<string>}}
See the description of the genarhhshitem above for details.

${quote:<string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
quotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to\n and\r , respectively For example,

${quote:ab"*"cd}
becomes
"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

${quote_local_part:<string>}
This operator is likequote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the conten$azfal _part(or any other
unknown data), you should always use this operator.

${quote_<lookup-type:<string>}
This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 9. For example,

${quote_ldap:two * two}
returns
tw0%20%5C2A%20two

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

${randint: <n>}
This operator returns a somewhat random number which is less than the supplied number and is at
least 0. The quality of this randomness depends on how Exim was built; the values are not suitable
for keying material. If Exim is linked against OpenSSL then RAND_pseudo_bytes() is used.
Otherwise, the implementation may be arc4random(), random() seeded by srandomdev() or
srandom(), or a custom implementation even weaker than random().

${reverse_ip<ipaddr>}
This operator reverses an IP address; for IPv4 addresses, the result is in dotted-quad decimal form,
while for IPv6 addreses the result is in dotted-nibble hexadecimal form. In both cases, this is the
"natural” form for DNS. For example,

${reverse_ip:192.0.2.4} and ${reverse_ip:2001:0db8:c42:9:1:abcd:192.0.2.3}
returns
4.2.0.192 and 3.0.2.0.0.0.0.c.d.c.b.a.1.0.0.0.9.0.0.0.2.4.c.0.8.b.d.0.1.0.0.2

${rfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding

112 String expansions (11)

specified by thdneaders_charsebption, which defaults to ISO-8859-1. If the string contains only
characters in the range 33-126, and no instances of the characters

?7=(0)<>@,;:\".[]

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
“encoded words” as necessary to encode all the characters.

${rfc2047d:<string>}
This operator decodes strings that are encoded as per RFC 2047. Binary zero bytes are replaced
by question marks. Characters are converted into the character set defihedd®rs _charset
Overlong RFC 2047 “words” are not recognized untdexck rfc2047_lengthis set false.

Note: If you use$header xxx (or $h_xxx) to access a header line, RFC 2047 decoding is done
automatically. You do not need to use this operator as well.

${rxquote:<string>}
Therxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${shalx<string>}
The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

${stat:<string>}
The string, after expansion, must be a file path. A call tostlag() function is made for this path. If
stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series olhame-=<value> pairs, where the values are all numerical, except for the
value of “smode”. The names are: “mode” (giving the mode as a 4-digit octal number), “smode”
(giving the mode in symbolic format as a 10-character string, as folstaemmand), “inode”,

“device”, “links”, “uid”, “gid”, “size”, “atime”, “mtime”, and “ctime”. You can extract individual
fields using thextract expansion item.

The use of thestat expansion in users’ filter files can be locked out by the system administrator.
Warning: The file size may be incorrect on 32-bit systems for files larger than 2GB.

${str2b64:<string>}
This operator converts a string into one that is base64 encoded.

${strlen:<string>}
The item is replace by the length of the expanded string, expressed as a decimal iNotd &0
not confusestrlen with length.

${substr_<start>_<length>:<string>}
The substr operator is a simpler interface to tlsebstr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${substr{<start>}{<length>}{<string>}}

See the description of the genesraibstr item above for details. The abbreviatisrcan be used
whensubstr is used as an operator.

${time_eval:<string>}
This item converts an Exim time interval sucl?dgh5m into a number of seconds.

${time_interval: <string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an inter-
val of time as a number of seconds. It is converted into a number of larger units and output in
Exim’s normal time format, for exampl&w3d4h2m6s.

${uc:<string>}
This forces the letters in the string into upper-case.

113 String expansions (11)

11.7 Expansion conditions
The following conditions are available for testing by $i¢ construct while expanding strings:

I<conditior»
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator {<string1>}{ <string2>}
There are a number of symbolic operators for doing numeric comparisons. They are:

= equal

== equal

> greater

>= greater or equal

< less

<= less or equal
For example:

${if >{$message_size {10M} ...

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters “K” or
“M” (in either upper or lower case), signifying multiplication by 1024 or 1024*1024, respectively.
As a special case, the numerical value of an empty string is taken as zero.

bool {<string>}
This condition turns a string holding a true or false representation into a boolean state. It parses
“true”, “false”, “yes” and “no” (case-insensitively); also positive integer numbers map to true if
non-zero, false if zero. Leading and trailing whitespace is ignored. All other string values will

result in expansion failure.

When combined with ACL variables, this expansion condition will let you make decisions in one
place and act on those decisions in another place. For example:

${if bool{$acl_m_privileged_sender} ...

bool_lax {<string>}
Like bool, this condition turns a string into a boolean state. But whwer@ accepts a strict set of
strings,bool_lax uses the same loose definition that the Roaterdition option uses. The empty
string and the values “false”, “no” and “0” map to false, all others map to true. Leading and
trailing whitespace is ignored.

Note that where “bool{00}" is false, “bool_lax{00}" is true.

crypteq {<string1>K <string2>}
This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 33). Otherwise, it is necessary to define SUPPORT_CRYPTEQ in
Local/Makefileto getcrypteq included in the binary.

Thecrypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with “{” it is assumed to be encrypted veityipt() or crypt16()(see below),

since such strings cannot begin with “{". Typically this will be a field from a password file. An
example of an encrypted string in LDAP form is:

{md5}CY9rzUYh03PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because they
are part of the expansion syntax. For example:

${if crypteq {test{{md5\}CY9rzUYh0O3PK3k6DJie09g==Kyes}{no}}
The following encryption types (whose names are matched case-independently) are supported:

114 String expansions (11)

« {md5} computes the MD5 digest of the first string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

» {shal} computes the SHA-1 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a hexadeci-
mal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

» {crypt} calls thecrypt() function, which traditionally used to use only the first eight characters
of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

» {cryptl6} calls thecryptl6()function, which was originally created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more charac-
ters may be used.

Exim has its own version afrypt16() which is just a double call torypt(). For operating systems

that have their own version, setting HAVE_CRYPT16 Lincal/Makefilewhen building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependentlakefilefor those operating systems that are known to suppgut16()

Some years after Exim'sryptl6() was implemented, a user discovered that it was not using the
same algorithm as some operating systems’ versions. It turns out that as wrgtbdd6()there is a
function calledbigcrypt()in some operating systems. This may or may not use the same algorithm,
and both of them may be different to Exim’s builtehypt16()

However, since there is now a move away from the traditiamgpt() functions towards using
SHAZ1 and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) irciypteq comparison, the default is
usually eithecrypt} or {cryptl6} , as determined by the setting of DEFAULT_CRYPT in
Local/Makefile The default default i§crypt} . Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

def.<variable name

The def condition must be followed by the name of one of the expansion variables defined in
section 11.9. The condition is true if the variable does not contain the empty string. For example:

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leadihcharacter. If the variable does not exist,
the expansion fails.

def:header <header name: or def.h_<header name:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note: No $ appears beforbeader_or h_in the condition, and the header name must be termin-
ated by a colon if white space does not follow.

eq {<string1>}{ <string2>}
eqi {<string1>}{ <string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are identi-
cal. Foreq the comparison includes the case of letters, whereasdbthe comparison is case-
independent.

exists kfile name}

The substring is first expanded and then interpreted as an absolute path. The condition is true if the
named file (or directory) exists. The existence test is done by callingt#itg) function. The use of
theexiststest in users’ filter files may be locked out by the system administrator.

115 String expansions (11)

first_delivery
This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

foral{ <a list>}{ <a conditiorr}

forany{<a list>}{ <a conditiorr}
These conditions iterate over a list. The first argument is expanded to form the list. By default, the
list separator is a colon, but it can be changed by the normal method. The second argument is
interpreted as a condition that is to be applied to each item in the list in turn. During the interpret-
ation of the condition, the current list item is placed in a variable ciliech

» Forforany, interpretation stops if the condition is true for any item, and the result of the whole
condition is true. If the condition is false for all items in the list, the overall condition is false.

» Forforall, interpretation stops if the condition is false for any item, and the result of the whole
condition is false. If the condition is true for all items in the list, the overall condition is true.

Note that negation oforany means that the condition must be false for all items for the overall
condition to succeed, and negationfafall means that the condition must be false for at least one
item. In this example, the list separator is changed to a comma:

${if forany{<, $recipients}{match{$item}{*user3@}}{yesino}}

The value of$itemis saved and restored whilerany or forall is being processed, to enable these
expansion items to be nested.

ge {string1>} <string2>}

gei {<string1>} <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string. F@rthe comparison includes the case of letters, whereas for
geithe comparison is case-independent.

gt {<string1>}{ <string2>}

gti {<string1>}{ <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string. Fgt the comparison includes the case of letters, whereagtfothe
comparison is case-independent.

isip {<string>}

isip4 {<string>}

isip6 {<string>}
The substring is first expanded, and then tested to see if it has the form of an IP address. Both IPv4
and IPv6 addresses are valid fsip, whereadsip4 andisip6 test specifically for IPv4 or IPv6
addresses.

For an IPv4 address, the test is for four dot-separated components, each of which consists of from
one to three digits. For an IPv6 address, up to eight colon-separated components are permitted,
each containing from one to four hexadecimal digits. There may be fewer than eight components if
an empty component (adjacent colons) is present. Only one empty component is permitted.

Note: The checks are just on the form of the address; actual numerical values are not considered.

Thus, for example, 999.999.999.999 passes the IPv4 check. The main use of these tests is to
distinguish between IP addresses and host names, or between IPv4 and IPv6 addresses. For
example, you could use

${if isip4{$sender_host_address}...
to test which IP version an incoming SMTP connection is using.

Idapauth {<ldap query}
This condition supports user authentication using LDAP. See section 9.13 for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered

116 String expansions (11)

anonymous regardless of the username, and will succeed in most configurations. See chapter 33
for details of SMTP authentication, and chapter 34 for an example of how this can be used.

le {<string1>}{ <string2>}

lei {<string1>}{ <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string. Herthe comparison includes the case of letters, wheredsiftre
comparison is case-independent.

It { <string1>}H <string2>}

Iti { <string1>}H <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string. Fdir the comparison includes the case of letters, whereds fttre comparison
is case-independent.

match {<string1>} <string2>}
The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of string2>. The easiest approach is to use the feature to disable
expansion of the regular expression. For example,

${if match {$local_part}{\Nd{3}\N} ...
If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must includé® timetacharacter at an appropriate
point.

At the start of anif expansion the values of the numeric variable substitutginstc. are remem-
bered. Obeying anatch condition that succeeds causes them to be reset to the substrings of that
condition and they will have these values during the expansion of the success string. At the end of
theif expansion, the previous values are restored. After testing a combination of conditions using
or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address gstring1>H <string2>}
Seematch_local_part

match_domain &string1>}{ <string2>}
Seematch_local_part

match_ip {<string1>}{ <string2>}
This condition matches an IP address to a list of IP address patterns. It must be followed by two
argument strings. The first (after expansion) must be an IP address or an empty string. The second
(after expansion) is a restricted host list that can match only an IP address, not a host name. For
example:

${if match_ip{$sender_host_address}{1.2.3.4:5.6.7.8H......}}
The specific types of host list item that are permitted in the list are:
e An IP address, optionally with a CIDR mask.
» A single asterisk, which matches any IP address.

* An empty item, which matches only if the IP address is empty. This could be useful for testing
for a locally submitted message or one from specific hosts in a single test such as

${if match_ip{$sender_host_address}{:4.3.2.1:... {..X..}}
where the first item in the list is the empty string.
* The item @[] matches any of the local host’s interface addresses.

117 String expansions (11)

» Single-key lookups are assumed to be like “net-" style lookups in host lists, ewettif is not
specified. There is never any attempt to turn the IP address into a host name. The most common
type of linear search famatch_ip is likely to beiplsearch, in which the file can contain CIDR
masks. For example:

${if match_ip{$sender_host_address¥iplsearch;/someffile}...

It is of course possible to use other kinds of lookup, and in such a case, you do need to specify
thenet- prefix if you want to specify a specific address mask, for example:

${if match_ip{$sender_host_address}{net24-dbm;/someffile}...

However, unless you are combiningraatch_ip condition with others, it is just as easy to use
the fact that a lookup is itself a condition, and write:

${lookup{${mask:$sender_host_address/24}}dbm{/a/file}...
Consult section 10.11 for further details of these patterns.

match_local_part {<string1>}{ <string2>}
This condition, together withmatch_address and match_domain, make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments: an
item and a list to match. A trivial example is:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument (after expansion) is a standard form of list, it
is possible to refer to a named list. Thus, you can use conditions like this:

${if match_domain{$domain}{+local_domains}...

For address lists, the matching starts off caselessly, but¢hseful item can be used, as in all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

Note: Host lists arenot supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work. However,
IP addresses can be matched usiragch_ip.

pam {<string1>:<string2>:...}
Pluggable Authentication Modulegttp://www.kernel.org/pub/linux/libs/pam/) are a facility
that is available in the latest releases of Solaris and in some GNU/Linux distributions. The Exim
support, which is intended for use in conjunction with the SMTP AUTH command, is available
only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile You probably need to addpam to EXTRALIBS, and in some releases of
GNU/Linux -Idl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space is ignored. The PAM module is initialized with the service name
“exim” and the user name taken from the first item in the colon-separated data sisingd%>).

The remaining items in the data string are passed over in response to requests from the authenti-
cation function. In the simple case there will only be one request, for a password, so the data
consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. If the data is being inserted from
a variable, thesg expansion item can be used to double any existing colons. For example, the
configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$authl:${sg{Sauth2}{:}{::}}}}
For a PLAIN authenticator you could use:
server_condition = ${if pam{$auth2:${sg{$auth3}{:}{::}}}}

118 String expansions (11)

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems. A patched version ofpée_unixmodule that comes with the

Linux PAM package is available frorttp://www.e-admin.de/pam_exim/ The patched module
allows one special uid/gid combination, in addition to root, to authenticate. If you build the
patched module to allow the Exim user and group, PAM can then be used from an Exim
authenticator.

pwcheck {string1>:<string2>}
This condition supports user authentication using the Cpwmsheckdaemon. This is one way of
making it possible for passwords to be checked by a process that is not running aotenT he
use ofpwcheckis now deprecated. Its replacemergdslauthdsee below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket limcal/Makefilebefore building Exim. For example:

CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensuexitmas the
only user that has access to tha/pwchecldirectory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

server_condition = ${if pwcheck{$authl:$auth2}}
Again, for a PLAIN authenticator configuration, this would be:
server_condition = ${if pwcheck{$auth2:$auth3}}

gueue_running
This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

radius {<authentication string}
Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set RADIUS _
CONFIG_FILE inLocal/Makefileto specify the location of the Radius client configuration file in
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with thdiusclient library, using the
original API. If you are using release 0.4.0 or later of this library, you need to set

RADIUS_LIB_TYPE=RADIUSCLIENTNEW

in Local/Makefilewhen building Exim. You can also link Exim with thiéoradius library that
comes with FreeBSD. To do this, set

RADIUS_LIB_TYPE=RADLIB

in Local/Makefile in addition to setting RADIUS_CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string specified by RADIUS_CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radius{<arguments>}}

saslauthd {{<user}{ <password}{ <servicee'l{ <realn>}}
This condition supports user authentication using the Cgastauthddaemon. This replaces the
older pwcheckdaemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
saslauthd daemon'’s socketliocal/Makefilebefore building Exim. For example:

119 String expansions (11)

CYRUS_SASLAUTHD_SOCKET=/var/state/saslauthd/mux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to gaslauthdcondition, but only two are mandatory. For
example:

server_condition = ${if saslauthd{{$auth1}{$auth2}}}

The service and the realm are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon, consult
the Cyrus documentation.

11.8 Combining expansion conditions

Several conditions can be tested at once by combining them usingnihend or combination
conditions. Note thaaind and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
the list. No repetition off is used.

or {{<cond>H <cond2}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eq{$local_parti{spgr}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several “match” sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<cond>K<cond2}...}
The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several “match” sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones are
parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of all the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning
extension.

$0, $1, etc
When amatch expansion condition succeeds, these variables contain the captured substrings
identified by the regular expression during subsequent processing of the success string of the
containingif expansion item. However, they do not retain their values afterwards; in fact, their
previous values are restored at the end of processiriyisam. The numerical variables may also
be set externally by some other matching process which precedes the expansion of the string. For
example, the commands available in Exim filter files includefasommand with its own regular
expression matching condition.

$acl_c...
Values can be placed in these variables bystigmodifier in an ACL. They can be given any name
that starts withbacl_cand is at least six characters long, but the sixth character must be either a
digit or an underscore. For examplgacl_c5 $acl_c_mycountThe values of théacl_c...vari-
ables persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and between different invocations of the same ACL. When a message is received,
the values of these variables are saved with the message, and can be accessed by filters, routers,
and transports during subsequent delivery.

120 String expansions (11)

$acl_m...
These variables are like tigacl_c...variables, except that their values are reset after a message
has been received. Thus, if several messages are received in one SMTP confecfiam,..
values are not passed on from one message to the ne$gchsc...values are. Théacl_m...
variables are also reset by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a
message is received, the values of these variables are saved with the message, and can be accessed
by filters, routers, and transports during subsequent delivery.

$acl_verify_message
After an address verification has failed, this variable contains the failure message. It retains its
value for use in subsequent modifiers. The message can be preserved by coding like this:

warn !verify = sender
set acl_mO0 = $acl_verify_message

You can usebacl_verify_messagduring the expansion of thessageor log_messagenodifiers,
to include information about the verification failure.

$address_data
This variable is set by means of taddress_dataoption in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the first address is used. See chapter 15 for more
details.Note: The contents dbaddress_datare visible in user filter files.

If $address_dat#s set when the routers are called from an ACL to verify a recipient address, the
final value is still in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the verification, and in this case the final valu&afidress_dat&s from the child’s routing.

If $address_datas set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time$sender_address_daté distinguish it from data
from a recipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

$address_file
When, as a result of aliasing, forwarding, or filtering, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. At other times, the variable is
empty. For example, using the default configuration, if t has aforwardfile containing

/home/r2d2/savemail

then when theaddress_file transport is running,$address_file contains the text string
/home/r2d2/savemail . For Sieve filters, the value may be “inbox” or a relative folder name.

It is then up to the transport configuration to generate an appropriate absolute path to the relevant
file.

$address_pipe
When, as a result of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

$authl-$auth3
These variables are used in SMTP authenticators (see chapters 34—38). Elsewhere, they are empty.

$authenticated _id
When a server successfully authenticates a client it may be configured to preserve some of the
authentication information in the variablkauthenticated_idsee chapter 33). For example, a
user/password authenticator configuration might preserve the user name for use in the routers.
Note that this is not the same information that is save@sander_host_authenticated/hen a
message is submitted locally (that is, not over a TCP connection) the vaBautifenticated_ids
normally the login name of the calling process. However, a trusted user can override this by means
of the-oMai command line option.

121 String expansions (11)

$authenticated_sender
When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is sufficiently trusted, as described in section 33.2. Unless the
data is the string “<>", it is set as the authenticated sender of the message, and the value is
available during delivery in th&authenticated_sendeariable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated_sendés an address constructed from the login name of the calling process and
$qualify_domainexcept that a trusted user can override this by means ebtas command line
option.

$authentication_failed
This variable is set to “1” in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to “0”. This makes it possible to distinguish between “did not try to
authenticate” $sender_host_authenticatesilempty andbauthentication_faileds set to “0”) and
“tried to authenticate but failed'$sender_host_authenticatelempty andbauthentication_failed
is set to “1"). Failure includes any negative response to an AUTH command, including (for
example) an attempt to use an undefined mechanism.

$body_linecount
When a message is being received or delivered, this variable contains the number of lines in the
message’s body. See altmessage_linecount

$body_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytes in the message’s body.

$bounce_recipient
This is set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text file is in use (see chapter 46).

$bounce_return_size_limit
This contains the value set in th®unce_return_size_limitoption, rounded up to a multiple of
1000. It is useful when a customized error message text file is in use (see chapter 46).

$caller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (§eeiginator_gid. If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid
The real user id under which the process that called Exim was running. This is not the same as the
user id of the originator of a message ($eeiginator_uid. If Exim re-execs itself, this variable in
the new incarnation normally contains the Exim uid.

$compile_date
The date on which the Exim binary was compiled.

$compile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of the program.

$demime_errorlevel
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

$demime_reason
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

122 String expansions (11)

$dnslist_domain

$dnslist_matched

$dnslist_text

$dnslist_value
When a DNS (black) list lookup succeeds, these variables are set to contain the following data
from the lookup: the list's domain name, the key that was looked up, the contents of any associated
TXT record, and the value from the main A record. See section 40.30 for more details.

$domain
When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase letters in the domain are converted into lower ca$ddorain

Global address rewriting happens when a message is received, so the v&denainduring

routing and delivery is the value after rewritifgdomainis set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commands in
one SMTP delivery)$domainis set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the valu&admainis required at transport

time — this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 23.

At the end of a delivery, if all deferred addresses have the same domain, it issietnrainduring
the expansion afelay_warning_condition

The$domainvariable is also used in some other circumstances:

* When an ACL is running for a RCPT commar&tjomaincontains the domain of the recipient
address. The domain of treenderaddress is irfsender_address_domadh both MAIL time
and at RCPT timebdomainis not normally set during the running of the MAIL ACL. However,
if the sender address is verified with a callout during the MAIL ACL, the sender domain is
placed infdomainduring the expansions bbsts interface, andport in thesmtptransport.

* When a rewrite item is being processed (see chapterd@tbmaincontains the domain portion
of the address that is being rewritten; it can be used in the expansion of the replacement address,
for example, to rewrite domains by file lookup.

» With one important exception, whenever a domain list is being scaifueanaincontains the
subject domainException: When a domain list in @ender_domainscondition in an ACL is
being processed, the subject domain is$sender_address_domaand not in$domain It
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which is what is $domainat this time).

* When thesmtp_etrn_command option is being expandedidomaincontains the complete
argument of the ETRN command (see section 45.8).

$domain_data
When thedomains option on a router matches a domain by means of a lookup, the data read by
the lookup is available during the running of the routeffedemain_dataln addition, if the driver
routes the address to a transport, the value is available in that transport. If the transport is handling
multiple addresses, the value from the first address is used.

$domain_datas also set when thdomainscondition in an ACL matches a domain by means of a
lookup. The data read by the lookup is available during the rest of the ACL statement. In all other
situations, this variable expands to nothing.

$exim_gid
This variable contains the numerical value of the Exim group id.

$exim_path
This variable contains the path to the Exim binary.

$exim_uid
This variable contains the numerical value of the Exim user id.

123 String expansions (11)

$found_extension
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

$header<name
This is not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain a wide variety of characters. Note also that bracesotlbst used.

$home
When thecheck _local_useloption is set for a router, the user’s home directory is plac&haome
when the check succeeds. In particular, this means it is set during the running of users’ filter files.
A router may also explicitly set a home directory for use by a transport; this can be overridden by
a setting on the transport itself.

When running a filter test via thdof option, $homels set to the value of the environment variable
HOME.

$host
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value &hostwhen the transport starts to run is the name of the first host on the list.
Note that this applies both to local and remote transports.

For thesmtptransport, if there is more than one host, the valu8hastchanges as the transport
works its way through the list. In particular, when thmtptransport is expanding its options for
encryption using TLS, or for specifying a transport filter (see chaptergstcontains the name
of the host to which it is connected.

When used in the client part of an authenticator configuration (see chapt&h@3}contains the
name of the server to which the client is connected.

$host_address
This variable is set to the remote host's IP address wherghastis set for a remote connection.
It is also set to the IP address that is being checked wheigtioee target hostsoption is being
processed.

$host_data
If a hostscondition in an ACL is satisfied by means of a lookup, the result of the lookup is made
available in theébhost_datavariable. This allows you, for example, to do things like this:

deny hosts = net-Isearch;/some/file
message = $host_data

$host_lookup_deferred
This variable normally contains “0”, as do#kost_lookup_failedWhen a message comes from a
remote host and there is an attempt to look up the host's name from its IP address, and the attempt
is not successful, one of these variables is set to “1”.

« If the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were foundphost_lookup_faileds set to “1”.

« If there is any kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is defined (for example, a timeout for a DNS lookBpdst_lookup_deferreid set
to “1”.
Looking up a host’s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original IP address. If this is not the case, Exim does not accept the looked up name(s),
and $host_lookup_faileds set to “1”. Thus, being able to find a name from an IP address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted $aodt_lookup_deferreid set to “1”. See
also$sender_host_name

124 String expansions (11)

$host_lookup_failed
See$host_lookup_deferred

$inode
The only time this variable is set is while expanding thieectory file option in theappendfile
transport. The variable contains the inode number of the temporary file which is about to be
renamed. It can be used to construct a unique name for the file.

$interface_address
This is an obsolete name fdreceived_ip_address

Sinterface_port
This is an obsolete name fBreceived_port

$item
This variable is used during the expansiorfafll andforany conditions (see section 11.7), and
filter, map, andreduceitems (see section 11.7). In other circumstances, it is empty.

$ldap_dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

$load_average
This variable contains the system load average, multiplied by 1000 so that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

$local_part
When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT commands
in an SMTP session$jocal_partis not set.

Global address rewriting happens when a message is received, so the v@loeabfpartduring

routing and delivery is the value after rewritinglocal_partis set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If a local part prefix or suffix has been recognized, it is not included in the val$oohl part
during routing and subsequent delivery. The values of any prefix or suffix &ledal_part prefix
and$local_part_suffixrespectively.

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_partis set to the local part of the parent address, not to the file name or
command (se8address_filand$address_pipe

When an ACL is running for a RCPT commarglocal_partcontains the local part of the recipi-
ent address.

When a rewrite item is being processed (see chaptei$Bidal_partcontains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"@test.example
abc\:xyz@test.example

the value offlocal_partis
abc:xyz

If you use $local_partto create another address, you should always wrap it inside a quoting
operator. For example, inradirectrouter you could have:

data = ${quote_local_part:$local_part}@new.domain.example

125 String expansions (11)

Note: The value of$local_partis normally lower cased. If you want to process local parts in a
case-dependent manner in a router, you can seafsdul_local_partoption (see chapter 15).

$local_part_data
When thelocal_parts option on a router matches a local part by means of a lookup, the data read
by the lookup is available during the running of the routelaxal_part_dataln addition, if the
driver routes the address to a transport, the value is available in that transport. If the transport is
handling multiple addresses, the value from the first address is used.

$local_part_datais also set when théocal_parts condition in an ACL matches a local part by
means of a lookup. The data read by the lookup is available during the rest of the ACL statement.
In all other situations, this variable expands to nothing.

$local_part_prefix
When an address is being routed or delivered, and a specific prefix for the local part was
recognized, it is available in this variable, having been removed$local_part

$local_part_suffix
When an address is being routed or delivered, and a specific suffix for the local part was
recognized, it is available in this variable, having been removed$ioral_part

$local_scan_data
This variable contains the text returned by theal _scan()function when a message is received.
See chapter 42 for more details.

$local_user_gid
SeeS$local_user_uid

$local_user_uid
This variable andblocal_user_gidare set to the uid and gid after tlwbeck_local_userrouter
precondition succeeds. This means that their values are available for the remaining preconditions
(senders require_files, and condition), for the address_dataexpansion, and for any router-
specific expansions. At all other times, the values in these variable§uiaret)(-1) and
(gid_t)(-1) , respectively.

$localhost_number
This contains the expanded value of fbealhost_numberoption. The expansion happens after
the main options have been read.

$log_inodes
The number of free inodes in the disk partition where Exim’s log files are being written. The value
is recalculated whenever the variable is referenced. If the relevant file system does not have the
concept of inodes, the value of is -1. See alsahieek log_inodeoption.

$log_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s log files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. See alsohtbek_log_spaception.

$mailstore_basename
This variable is set only when doing deliveries in “mailstore” format in dippendfiletransport.
During the expansion of theailstore_prefix, mailstore_suffix, message_prefixandmessage_
suffix options, it contains the basename of the files that are being written, that is, the name without
the “.tmp”, “.env”, or “.msg” suffix. At all other times, this variable is empty.

$malware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the A@lware condition is true (see section 41.1).

$max_received_linelength
This variable contains the number of bytes in the longest line that was received as part of the
message, not counting the line termination character(s).

126 String expansions (11)

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during a single delivery attempt.

$message_body
This variable contains the initial portion of a message’s body while it is being delivered, and is
intended mainly for use in filter files. The maximum number of characters of the body that are put
into the variable is set by timeessage_body_visibleonfiguration option; the default is 500.

By default, newlines are converted into space$imessage_bogyo make it easier to search for
phrases that might be split over a line break. However, this can be disabled by settsgge
body_newlinesto be true. Binary zeros are always converted into spaces.

$message_body_end

This variable contains the final portion of a message’s body while it is being delivered. The format
and maximum size are as fmessage_body

$message_body_size
When a message is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See al8message_siz&body_linecountand$body_zerocount

$message_exim_id
When a message is being received or delivered, this variable contains the unique message id that is
generated and used by Exim to identify the message. An id is not created for a message until after
its header has been successfully receiate: This isnotthe contents of th&lessage-IDheader
line; it is the local id that Exim assigns to the message, for exafrp¥1K-0001yO-VA .

$message_headers
This variable contains a concatenation of all the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline charac-
ters. Their contents are decoded in the same way as a header line that is inseTézdiby

$message_headers_raw

This variable is likebmessage _headeexcept that no processing of the contents of header lines is
done.

$message_id
This is an old name f@message_exim_id/hich is now deprecated.

$message_linecount
This variable contains the total number of lines in the header and body of the message. Compare
$body_linecountwhich is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecounbntains the number of lines received. Before delivery happens (that is,
before filters, routers, and transports run) the count is increased to includReteévedheader
line that Exim standardly adds, and also any other header lines that are added by ACLs. The blank
line that separates the message header from the body is not counted.

As with the special case dfmessage_sizeluring the expansion of the appendfile transport’s
maildir_tag option in maildir format, the value &message_linecourd the precise size of the
number of newlines in the file that has been written (minus one for the blank line between the
header and the body).

Here is an example of the use of this variable in a DATA ACL:

deny message = Too many lines in message header
condition =\
${if <{250}{${eval:$message_linecount - $body_linecount}}}

In the MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet been
received.

$message_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (Bneblage-toy

127 String expansions (11)

that are added to individual deliveries as they are written. However, there is one special case:
during the expansion of thmaildir_tag option in theappendfiletransport while doing a delivery

in maildir format, the value o$message_sias the precise size of the file that has been written.
See als®message_body_sj&body_linecountand$body_zerocount

While running a per message ACL (mail/rcpt/predaganessage_sizeontains the size supplied
on the MAIL command, or -1 if no size was given. The value may not, of course, be truthful.

$mime_xxx
A number of variables whose names start vithimeare available when Exim is compiled with
the content-scanning extension. For details, see section 41.4.

$n0-$n9
These variables are counters that can be incremented by meansadfithemmand in filter files.

$original_domain
When a top-level address is being processed for delivery, this contains the same &doenam
However, if a “child” address (for example, generated by an alias, forward, or filter file) is being
processed, this variable contains the domain of the original address (lower cased). This differs
from $parent_domaironly when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transpdboriginal_domainis not set.

If a new address is created by means afediver command in a system filter, it is set up with an
artificial “parent” address. This has the local pgstem-filteand the default qualify domain.

$original_local_part
When a top-level address is being processed for delivery, this contains the same \#lluzahs
part, unless a prefix or suffix was removed from the local part, bec&oasiginal_local_part
always contains the full local part. When a “child” address (for example, generated by an alias,
forward, or filter file) is being processed, this variable contains the full local part of the original
address.

If the router that did the redirection processed the local part case-insensitively, the value in
$original_local_partis in lower case. This variable differs frofparent_local_partonly when

there is more than one level of aliasing or forwarding. When more than one address is being
delivered in a single transport rugriginal_local_partis not set.

If a new address is created by means afediver command in a system filter, it is set up with an
artificial “parent” address. This has the local gggtem-filteiand the default qualify domain.

$originator_gid
This variable contains the value 8taller_gidthat was set when the message was received. For
messages received via the command line, this is the gid of the sending user. For messages received
by SMTP over TCP/IP, this is normally the gid of the Exim user.

$originator_uid
The value of$caller_uidthat was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, this is normally the uid of the Exim user.

$parent_domain
This variable is similar t&boriginal_domain(see above), except that it refers to the immediately
preceding parent address.

$parent_local_part
This variable is similar té&original_local_part(see above), except that it refers to the immediately
preceding parent address.

$pid
This variable contains the current process id.

$pipe_addresses
This is not an expansion variable, but is mentioned here because the$iey addresses
is handled specially in the command specification for ghge transport (chapter 29) and in

128 String expansions (11)

transport filters (described und&ansport_filter in chapter 24). It cannot be used in general
expansion strings, and provokes an “unknown variable” error if encountered.

$primary_hostname
This variable contains the value setjymary_hostname in the configuration file, or read by the
uname()function. If uname()returns a single-component name, Exim cagithostbyname({or
getipnodebyname(yhere available) in an attempt to acquire a fully qualified host name. See also
$smtp_active_hostname

$prvscheck_address
This variable is used in conjunction with thevscheck expansion item, which is described in
sections 11.5 and 40.48.

$prvscheck_keynum
This variable is used in conjunction with thmvscheck expansion item, which is described in
sections 11.5 and 40.48.

$prvscheck_result
This variable is used in conjunction with thmvscheck expansion item, which is described in
sections 11.5 and 40.48.

$qualify_domain
The value set for thgualify_domain option in the configuration file.

$qualify_recipient
The value set for thqualify_recipient option in the configuration file, or if not set, the value of
$qualify_domain

$rcpt_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands received for the current message. If this variable is used in a RCPT ACL, its value includes
the current command.

$rcpt_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a tempgyaegbnse.

$rept_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a permaxgemisfionse.

$received_count
This variable contains the number Beceivedheader lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

$received_for
If there is only a single recipient address in an incoming message, this variable contains that
address when thReceivedheader line is being built. The value is copied after recipient rewriting
has happened, but before theal_scan()function is run.

$received_ip_address
As soon as an Exim server starts processing an incoming TCP/IP connection, this variable is set to
the address of the local IP interface, atieceived_portis set to the local port number. (The
remote IP address and port are$isender_host_addresmd $sender_host_pajt When testing
with -bh, the port value is -1 unless it has been set usingpiecommand line option.

As well as being useful in ACLs (including the “connect” ACL), these variable could be used, for
example, to make the file name for a TLS certificate depend on which interface and/or port is
being used for the incoming connection. The value$reteived_ip_addressnd $received_port

are saved with any messages that are received, thus making these variables available at delivery
time.

Note: There are no equivalent variables for outgoing connections, because the values are unknown
(unless they are explicitly set by options of sinetptransport).

129 String expansions (11)

$received_port
See$received_ip_address

$received_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
start with “smtp” (the client used HELO) or “esmtp” (the client used EHLO). This can be followed
by “s” for secure (encrypted) and/or “a” for authenticated. Thus, for example, if the protocol is set
to “esmtpsa”, the message was received over an encrypted SMTP connection and the client was
successfully authenticated.

Exim uses the protocol name “smtps” for the case when encryption is automatically set up on
connection without the use of STARTTLS (sé® on_connect_port}, and the client uses HELO

to initiate the encrypted SMTP session. The name “smtps” is also used for the rare situation where
the client initially uses EHLO, sets up an encrypted connection using STARTTLS, and then uses
HELO afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

$received_time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

$recipient_data
This variable is set after an indexing lookup success in an A€tlipients condition. It contains
the data from the lookup, and the value remains set until thereeigients test. Thus, you can do
things like this:

require recipients = cdb*@;/somef/file
deny some further test involvirgrecipient_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$recipient_verify_failure
In an ACL, when a recipient verification fails, this variable contains information about the failure.
It is set to one of the following words:

» “qualify”: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

» “route”: Routing failed.

* “mail”: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, on initial connection, HELO, or MAIL).

* ‘“recipient” The RCPT command in a callout was rejected.
* “postmaster”: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between rejections of MAIL and
rejections of RCPT.

$recipients
This variable contains a list of envelope recipients for a message. A comma and a space separate
the addresses in the replacement text. However, the variable is not generally available, to prevent
exposure of Bcc recipients in unprivileged users’ filter files. You canfuseipientsonly in these
cases:

(1) In a system filter file.

130 String expansions (11)

(2) Inthe ACLs associated with the DATA command and with non-SMTP messages, that is, the
ACLs defined byacl smtp_predatg acl_smtp_datg acl_smtp_mime acl_not_smtp_
start, acl_not_smtp andacl_not_smtp_mime

(3) From within docal_scan()function.

$recipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

$regex_match_string
This variable is set to contain the matching regular expression aftegex ACL condition has
matched (see section 41.5).

$reply_address
When a message is being processed, this variable contains the contentReptirelo:header
line if one exists and it is not empty, or otherwise the contents oFtbm: header line. Apart from
the removal of leading white space, the value is not processed in any way. In particular, no RFC
2047 decoding or character code translation takes place.

$return_path
When a message is being delivered, this variable contains the return path — the sender field that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address$return_pathhas the same value &sender_addressut if, for example, an incoming
message to a mailing list has been expanded by a router which specifies a different address for
bounce message$return_pathsubsequently contains the new bounce address, whiseasler_
addressalways contains the original sender address that was received with the message. In other
words, $sender_addressontains the incoming envelope sender, &neturn_pathcontains the
outgoing envelope sender.

$return_size_limit
This is an obsolete name fBlbounce_return_size_limit

$runrc
This variable contains the return code from a command that is run {tbe...} expansion item.
Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to sgtunrc by the expansion of one option, and use it in another.

$self_hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by theelf generic router option. One of its values causes the address to be
passed to another router. When this happ&aslf_hostnames set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

$sender_address
When a message is being processed, this variable contains the sender’s address that was received
in the message’s envelope. The case of letters in the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. Skretalso
path

$sender_address_data
If $address_datas set when the routers are called from an ACL to verify a sender address, the
final value is preserved i$sender_address_datéo distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserve it for longer, you can save it in an ACL variable.

$sender_address_domain
The domain portion ddsender_address

$sender_address_local_part
The local part portion ddsender_address

131 String expansions (11)

$sender_data
This variable is set after a lookup success in an A€einderscondition or in a routesenders
option. It contains the data from the lookup, and the value remains set until thearelerstest.
Thus, you can do things like this:

require senders = cdb*@;/somef/file
deny some further test involvirfsender_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost
When a message is received from a remote host, this variable contains the host name and IP
address in a single string. It ends with the IP address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
verified by looking up its IP address. (Looking up the IP address can be forced bgshdookup
option, independent of verification.) A plain host name at the start of the string is a verified host
name; if this is not present, verification either failed or was not requested. A host name in parenth-
eses is the argument of a HELO or EHLO command. This is omitted if it is identical to the verified
host name or to the host’s IP address in square brackets.

$sender_helo_name
When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in this variable. It is also set if HELO or EHLO is used when
a message is received using SMTP locally vialbser -bS options.

$sender_host_address
When a message is received from a remote host, this variable contains that host's IP address. For
locally submitted messages, it is empty.

$sender_host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no success-
ful authentication. See al§authenticated_id

$sender_host_name
When a message is received from a remote host, this variable contains the host's name as obtained
by looking up its IP address. For messages received by other means, this variable is empty.

If the host name has not previously been looked up, a referengsetader_host_nanteggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup fails to find
any data, or if the forward lookup does not yield the original IP addréssnder_host_name
remains empty, anghost_lookup_faileds set to “1".

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
$host_lookup_deferreid set to “1”, andbhost_lookup_failedemains set to “0”.

Once$host_lookup_faileds set to “1”, Exim does not try to look up the host name again if there
is a subsequent reference®sender_host_name the same Exim process, but it does try again if
$host_lookup_deferreid set to “1”.

Exim does not automatically look up every calling host’'s name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

A string containingssender_host_name expanded.

» The calling host matches the list iost_lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the defatlosor
lookup is unset.)

132 String expansions (11)

« Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections 10.13 and 10.16.

e The calling host matchelselo_try verify _hosts or helo_verify _hosts In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

* The remote host issues a EHLO or HELO command that quotes one of the domagls in
lookup_domains The default value of this option is

helo_lookup_domains = @ : @]

which causes a lookup if a remote host (incorrectly) gives the server's name or IP address in an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote host, this variable contains the port number that was
used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identification received
in response to an RFC 1413 request. When a message has been received locally, this variable
contains the login name of the user that called Exim.

$sender_rate_xxx
A number of variables whose names be§sender_rate are set as part of theatelimit ACL
condition. Details are given in section 40.36.

$sender_rcvhost
This is provided specifically for use iReceivedheaders. It starts with either the verified host
name (as obtained from a reverse DNS lookup) or, if there is no verified host name, the IP address
in square brackets. After that there may be text in parentheses. When the first item is a verified
host name, the first thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the first item is an IP address, the port is
recorded as “portexxX inside the parentheses.

There may also be items of the form “heloxX if HELO or EHLO was used and its argument

was not identical to the real host name or IP address, and “igexit=f an RFC 1413 ident string

is available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of tikeceivedheader.

$sender_verify_failure
In an ACL, when a sender verification fails, this variable contains information about the failure.
The details are the same as$czcipient_verify_failure

$sending_ip_address
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the IP address of the local interface that is being used. This is useful if a host that has
more than one IP address wants to take on different personalities depending on which one is being
used. For incoming connections, $eceived_ip_address

$sending_port
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the local port that is being used. For incoming connectiorfireseéved_port

$smtp_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as
specified by thesmtp_active_hostnameoption. The value offsmtp_active_hostnanie saved
with any message that is received, so its value can be consulted during routing and delivery.

$smtp_command
During the processing of an incoming SMTP command, this variable contains the entire command.
This makes it possible to distinguish between HELO and EHLO in the HELO ACL, and also to
distinguish between commands such as these:

133 String expansions (11)

MAIL FROM:<>
MAIL FROM: <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address i$smtp_commanis the original address before any rewriting, whereas the values in
$local_partand$domainare taken from the address after SMTP-time rewriting.

$smtp_command_argument
While an ACL is running to check an SMTP command, this variable contains the argument, that is,
the text that follows the command name, with leading white space removed. Following the intro-
duction of $smtp_commandhis variable is somewhat redundant, but is retained for backwards
compatibility.

$smtp_count_at_connection_start

This variable is set greater than zero only in processes spawned by the Exim daemon for handling
incoming SMTP connections. The name is deliberately long, in order to emphasize what the
contents are. When the daemon accepts a new connection, it increments this variable. A copy of
the variable is passed to the child process that handles the connection, but its value is fixed, and
never changes. It is only an approximation of how many incoming connections there actually are,
because many other connections may come and go while a single connection is being processed.
When a child process terminates, the daemon decrements its copy of the variable.

$sn0—$sn9
These variables are copies of the values offtheé— $n9accumulators that were current at the end
of the system filter file. This allows a system filter file to set values that can be tested in users’
filter files. For example, a system filter could set a value indicating how likely it is that a message
is junk mail.

$spam_xxx
A number of variables whose names start vligpamare available when Exim is compiled with
the content-scanning extension. For details, see section 41.2.

$spool_directory
The name of Exim’s spool directory.

$spool_inodes
The number of free inodes in the disk partition where Exim’s spool files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is -1. See alsoiteek_spool_inodesption.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s spool files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. For example, to check in an ACL that there is at least 50 megabytes
free on the spool, you could write:

condition = ${if > {$spool_space}{50000}}
See also theheck_spool_spaception.

$thisaddress
This variable is set only during the processing of thenyaddresscommand in a filter file. Its
use is explained in the description of that command, which can be found in the separate document
entitledExim’s interfaces to mail filtering

$tIs_certificate_verified
This variable is set to “1” if a TLS certificate was verified when the message was received, and “0”
otherwise.

$tIs_cipher
When a message is received from a remote host over an encrypted SMTP connection, this variable
is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other circum-
stances, in particular, for message received over unencrypted connections, the variable is empty.

134 String expansions (11)

Testing $tls_cipher for emptiness is one way of distinguishing between encrypted and non-
encrypted connections during ACL processing.

The $tls_ciphervariable retains its value during message delivery, except when an outward SMTP
delivery takes place via themtptransport. In this casétls_cipheris cleared before any outgoing
SMTP connection is made, and then set to the outgoing cipher suite if one is negotiated. See
chapter 39 for details of TLS support and chapter 30 for details efritpgransport.

$tls_peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
configured to request a certificate from the client, the value of the Distinguished Name of the
certificate is made available in ti¢ls_peerdrduring subsequent processing. Liks_cipher the
value is retained during message delivery, except during outbound SMTP deliveries.

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox files, for example: Thu
Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The timezone
is always given as a numerical offset from UTC, with positive values used for timezones that are
ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log
The time and date in the format used for writing Exim's log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log files whdog_file pathcontains thésDflag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu
This variable contains the UTC date and time in “Zulu” format, as specified by 1SO 8601, for
example: 20030221154023Z.

$value
This variable contains the result of an expansion lookup, extraction operation, or external com-
mand, as described above. It is also used durieduce expansion.

$version_number
The version number of Exim.

$warn_message_delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

$warn_message_recipients

This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

135 String expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefileand then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutines is via a global configuration option caldeld startup and an expansion
string operato{perl ...}. If there is noperl_startup option in the Exim configuration file then no

Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there igeal_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value ofperl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do '/etc/exim.pl'

where/etc/exim.plis Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

» Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

» The command line optiorps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line optigod (for delay) which suppresses the initial startup, evepeifl_
at_start is set.

12.2 Calling Perl subroutines

When the configuration file includesperl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined bypthig_startup code. The operator is used in any
of the following forms:

${perl{foo}}
${perl{fool{argument}}
${perl{foo}{argumentlH{argument2} ... }

which calls the subroutinéo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to
Exim to be inserted into the expanded string. If the return valuendef the expansion is forced to

fail in the same way as an explicit “fail” on ahor lookup item. If the subroutine aborts by obeying
Perl’'sdie function, the expansion fails with the error message that was pasied to

136 Embedded Perl (12)

12.3 Calling Exim functions from Perl

Within any Perl code called from Exim, the functi@xim::expand_string(js available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string(‘$local_part");

makes the current Exirilocal_partavailable in the Perl variabl§lp. Note those are single quotes
and not double quotes to protect agadigtal_partbeing interpolated as a Perl variable.

If the string expansion is forced to fail by a “fail” item, the resultEXim::expand_string(}s undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same waydas\ifere used.

Two other Exim functions are available for use from within Perl cdgldm::debug_write()writes a

string to the standard error stream if Exim’s debugging is enabled. If you want a newline at the end,
you must supply itExim::log_write()writes a string to Exim’s main log, adding a leading timestamp.

In this case, you should not supply a terminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected tédev/nullin the daemon. The chaos is avoided, but the output is lost.

The Perlwarn statement writes to the standard error stream by default. Callgatn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from twarn statement to be written to the Exim main log.

You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discardwarn output completely, you need this:

$SIG{ _WARN__}=sub{}
Whenever avarn is obeyed, the anonymous subroutine is called. In this example, the code for the

subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
thewarn message is passed as the first subroutine argument.

137 Embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more “logical” interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports “loopback” interfaces (127.0.0.1 in IPv4 and ::1 in

IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for use in three different circumstances:

(1) When a listening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. This is required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an IP address that in fact belongs to the local host. Unlesgltlveuter option or
theallow_localhostoption of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want all its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does
not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a number of options that can be used to influence Exim’s behav-
iour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
$received_ip_addresnd$received_port

13.1 Starting a listening daemon

When a listening daemon is started (by means of-biecommand line option), the interfaces and
ports on which it listens are controlled by the following options:

» daemon_smtp_portscontains a list of default ports. (For backward compatibility, this option can
also be specified in the singular.)

* local_interfacescontains list of interface IP addresses on which to listen. Each item may option-
ally also specify a port.

The default list separator in both cases is a colon, but this can be changed as described in section 6.19.
When IPv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

local_interfaces = <; 127.0.0.1 ;\
192.168.23.65 ; \
a1\
3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an IP addriegslininterfaces

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different IP addresses:

local_interfaces = <; 192.168.23.65.1234 ; \
3ffe:ffff:836f::fe86:a061.1234

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

138 Starting the daemon (13)

local_interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the valuedd#emon_smtp_portsis used. The default setting contains
just one port:

daemon_smtp_ports = smtp

If more than one port is listed, each interface that does not have its own port specified listens on all of
them. Ports that are listed idaemon_smtp_portscan be identified either by name (defined in
/etc/servicesor by number. However, when ports are given with individual IP addresséscah
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as “all IPv4 interfaces” and
“all IPv6 interfaces”, respectively. In each case, Exim tells the TCP/IP stack to “listen on all IPv
interfaces” instead of setting up separate listening sockets for each interface. The default value of
local_interfacesis

local_interfaces = 0.0.0.0
when Exim is built without IPv6 support; otherwise it is:
local_interfaces = <; ::0; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -0X command line option can be used to override the valuedagimon_smtp_portsand/or
local_interfacesfor a particular daemon instance. Another way of doing this would be to use macros
and the-D option. However;0X can be used by any admin user, whereas modification of the runtime
configuration byD is allowed only when the caller is root or exim.

The value of-0X is a list of items. The default colon separator can be changed in the usual way if
required. If there are any items that do not contain dots or colons (that is, are not IP addresses), the
value ofdaemon_smtp_portsis replaced by the list of those items. If there are any items that do
contain dots or colons, the valuelo€al_interfacesis replaced by those items. Thus, for example,

-0X 1225
overridesdaemon_smtp_ports but leavesocal_interfacesunchanged, whereas
-0X 192.168.34.5.1125

overrideslocal_interfaces leaving daemon_smtp_portsunchanged. (However, sindecal_inter-
facesnow contains no items without ports, the valuedaEmon_smtp_portsis no longer relevant in
this example.)

13.4 Support for the obsolete SSMTP (or SMTPS) protocol

Exim supports the obsolete SSMTP protocol (also known as SMTPS) that was used before the
STARTTLS command was standardized for SMTP. Some legacy clients still use this protocol. If the
tls_on_connect_portsoption is set to a list of port numbers, connections to those ports must use
SSMTP. The most common use of this option is expected to be

tls_on_connect_ports = 465

because 465 is the usual port number used by the legacy clients. There is also a command line option
-tls-on-connect which forces all ports to behave in this way when a daemon is started.

Warning: Settingtls_on_connect_portsdoes not of itself cause the daemon to listen on those ports.
You must still specify them irdaemon_smtp_ports local_interfaces or the-oX option. (This is

139 Starting the daemon (13)

becausetls_on_connect_portsapplies toinetd connections as well as to connections via the
daemon.)

13.5 IPv6 address scopes

IPv6 addresses have “scopes”, and a host with multiple hardware interfaces can, in principle, have the
same link-local IPv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to
addresses like this:

fe80::202:b3ff:fe03:45c1%eth0

To accommaodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim caligetaddrinfo()to convert a textual IPv6 address for actual use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problengetaiidrinfo() If

IPV6_USE_INET_PTON=yes

is set inLocal/Makefile(or an OS-dependent Makefile) when Exim is built, Exim uses_pton()to
convert a textual IPv6 address for actual use, insteagetafddrinfo() (Before version 4.14, it always
used this function.) Of course, this means that the additional functionalitgetdddrinfo() —
recognizing scoped addresses — is lost.

13.6 Disabling IPv6

Sometimes it happens that an Exim binary that was compiled with IPv6 support is run on a host
whose kernel does not support IPv6. The binary will fall back to using IPv4, but it may waste
resources looking up AAAA records, and trying to connect to IPv6 addresses, causing delays to mail
delivery. If you set thelisable_ipv6 option true, even if the Exim binary has IPv6 support, no IPv6
activities take place. AAAA records are never looked up, and any IPv6 addresses that are listed in
local_interfaces data for themanualrouterouter, etc. are ignored. If IP literals are enabled, the
ipliteral router declines to handle IPv6 literal addresses.

On the other hand, when IPv6 is in use, there may be times when you want to disable it for certain
hosts or domains. You can use tires_ipv4_lookupoption to globally suppress the lookup of AAAA
records for specified domains, and you can useigin@re_target_hostsgeneric router option to
ignore IPv6 addresses in an individual router.

13.7 Examples of starting a listening daemon
The default case in an IPv6 environment is

daemon_smtp_ports = smtp
local_interfaces = <; ::0; 0.0.0.0

This specifies listening on the smtp port on all IPv6 and IPv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in daemon.source file.)

To specify listening on ports 25 and 26 on all interfaces:
daemon_smtp_ports = 25 : 26
(leavinglocal_interfacesat the default setting) or, more explicitly:

local_interfaces = <; ::0.25 ;::0.26\
0.0.0.0.25; 0.0.0.0.26

To listen on the default port on all IPv4 interfaces, and on port 26 on the IPv4 loopback address only:
local_interfaces = 0.0.0.0 : 127.0.0.1.26
To specify listening on the default port on specific interfaces only:

140 Starting the daemon (13)

local_interfaces = 192.168.34.67 : 192.168.34.67

Warning: Such a setting excludes listening on the loopback interfaces.

13.8 Recognizing the local host

Thelocal_interfacesoption is also used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of all the interfaces on which a daemon is listening
are always treated as local.

For this usage, port numbers liocal_interfacesare ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or IPv6) addresses to use for checking.

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat all interfaces as local when routing. You can do this by settiaglocal_inter-
facesto a list of IP addresses, possibly including the “all” wildcard values. These addresses are
recognized as local, but are not used for listening. Consider this example:

local_interfaces = <; 127.0.0.1 ; ::1;\
192.168.53.235 ; \
3ffe:2101:12:1:a00:20ff:fe86:a061

extra_local_interfaces = <;::0; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any local interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by settimgsteetreat_as_locabption.

This contains host names rather than IP addresses. When a host is referenced during routing, either
via an MX record or directly, it is treated as the local host if its name maticbsts_treat_as_local

or if any of its IP addresses maitodeal_interfacesor extra_local_interfaces

13.9 Delivering to a remote host

Delivery to a remote host is handled by the smtp transport. By default, it allows the system’s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, thinterface option can be set to specify which interface is used. See the description
of the smtp transport in chapter 30 for more details.

141 Starting the daemon (13)

14. Main configuration

The first part of the run time configuration file contains three types of item:

» Macro definitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

« Named list definitions: These lines start with one of the words “domainlist”, “hostlist”,
“addresslist”, or “localpartlist”. Their use is described in section 10.5.

» Main configuration settings: Each setting occupies one line of the file (with possible continu-
ations). If any setting is preceded by the word “hide”, tb® command line option displays its
value to admin users only. See section 6.10 for a description of the syntax of these option settings.

This chapter specifies all the main configuration options, along with their types and default values.
For ease of finding a particular option, they appear in alphabetical order in section 14.23 below.
However, because there are now so many options, they are first listed briefly in functional groups, as
an aid to finding the name of the option you are looking for. Some options are listed in more than one

group.

14.1 Miscellaneous

bi_command
disable_ipv6
keep_malformed
localhost_number
message_body newlines
message_body_visible
mua_wrapper
print_topbitchars
timezone

14.2 Exim parameters

exim_group
exim_path
exim_user
primary_hostname
split_spool_directory
spool_directory

14.3 Privilege controls

admin_groups
deliver_drop_privilege
local_from_check
local_from_prefix
local_from_suffix
local_sender_retain
never_users
prod_requires_admin
queue_list_requires_admin
trusted_groups
trusted_users

14.4 Logging

hosts_connection_nolog
log_file_path

to run for-bi command line option
do no IPv6 processing

for broken files — should not happen
for unique message ids in clusters
retain newlines itmessage_body
how much to show i®message_body
run in “MUA wrapper” mode

top-bit characters are printing

force time zone

override compiled-in value
override compiled-in value
override compiled-in value
default fromuname()

use multiple directories
override compiled-in value

groups that are Exim admin users
drop root for delivery processes
insertSenderif necessary

for testingFrom: for local sender
for testingFrom: for local sender
keepSenderfrom untrusted user
do not run deliveries as these
forced delivery requires admin user
queue listing requires admin user
groups that are trusted

users that are trusted

exemption from connect logging
override compiled-in value

142 Main configuration (14)

log_selector
log_timezone
message_logs
preserve_message_logs
process_log_path
syslog_duplication
syslog_facility
syslog_processname
syslog_timestamp
write_rejectlog

14.5 Frozen messages

auto_thaw

freeze_tell
move_frozen_messages
timeout_frozen_after

14.6 Data lookups

ibase_servers
Idap_ca_cert_dir
Idap_ca_cert_file
Idap_cert_file
Idap_cert_key
Idap_cipher_suite
Idap_default_servers
Idap_require_cert
Idap_start_tls
Idap_version
lookup_open_max
mysql_servers
oracle_servers
pgsql_servers
sglite_lock_timeout

14.7 Message ids

message_id_header_domain
message_id_header_text

14.8 Embedded Perl Startup

perl_at_start
perl_startup

14.9 Daemon

daemon_smtp_ports
daemon_startup_retries
daemon_startup_sleep
extra_local_interfaces
local_interfaces
pid_file_path
gueue_run_max

set/unset optional logging

add timezone to log lines

create per-message logs

after message completion

for SIGUSR1 aneéxiwhat

controls duplicate log lines on syslog
set syslog “facility” field

set syslog “ident” field

timestamp syslog lines

control use of message log

sets time for retrying frozen messages
send message when freezing

to another directory

keep frozen messages only so long

InterBase servers

dir of CA certs to verify LDAP server’s
file of CA certs to verify LDAP server’s
client cert file for LDAP

client key file for LDAP

TLS negotiation preference control
used if no server in query

action to take without LDAP server cert
require TLS within LDAP

set protocol version

lookup files held open

default MySQL servers

Oracle servers

default PostgreSQL servers

as it says

used to buildMessage-IDheader
ditto

always start the interpreter
code to obey when starting Perl

default ports

number of times to retry

time to sleep between tries

not necessarily listened on

on which to listen, with optional ports
override compiled-in value

maximum simultaneous queue runners

143 Main configuration (14)

14.10 Resource control

check_log_inodes
check_log_space
check_spool_inodes
check_spool_space
deliver_queue_load_max
gueue_only_load
gueue_only_load_latch
queue_run_max
remote_max_parallel
smtp_accept_max
smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection
smtp_accept_reserve
smtp_check_spool_space
smtp_connect_backlog
smtp_load_reserve
smtp_reserve_hosts

14.11 Policy controls

acl_not_smtp
acl_not_smtp_mime
acl_not_smtp_start
acl_smtp_auth
acl_smtp_connect
acl_smtp_data
acl_smtp_dkim
acl_smtp_etrn
acl_smtp_expn
acl_smtp_helo
acl_smtp_mail
acl_smtp_mailauth
acl_smtp_mime
acl_smtp_predata
acl_smtp_quit
acl_smtp_rcpt
acl_smtp_starttls
acl_smtp_vrfy
av_scanner
check_rfc2047_length
dns_csa_search_limit
dns_csa_use_reverse
header_maxsize
header_line_maxsize
helo_accept_junk_hosts
helo_allow_chars
helo_lookup_domains
helo_try verify_hosts
helo_verify_hosts
host_lookup
host_lookup_order
host_reject_connection

before accepting a message

before accepting a message

before accepting a message

before accepting a message

no queue deliveries if load high

gueue incoming if load high

don’t re-evaluate load for each message
maximum simultaneous queue runners
parallel SMTP delivery per message
simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection

connections from one host

queue mail if more connections

queue if more messages per connection
only reserve hosts if more connections
from SIZE on MAIL command

passed to TCP/IP stack

SMTP from reserved hosts if load high
these are the reserve hosts

ACL for non-SMTP messages

ACL for non-SMTP MIME parts

ACL for start of non-SMTP message
ACL for AUTH

ACL for connection

ACL for DATA

ACL for DKIM verification

ACL for ETRN

ACL for EXPN

ACL for EHLO or HELO

ACL for MAIL

ACL for AUTH on MAIL command
ACL for MIME parts

ACL for start of data

ACL for QUIT

ACL for RCPT

ACL for STARTTLS

ACL for VRFY

specify virus scanner

check length of RFC 2047 “encoded words”
control CSA parent search depth
en/disable CSA IP reverse search
total size of message header
individual header line limit

allow syntactic junk from these hosts
allow illegal chars in HELO names
lookup hostname for these HELO names
HELO soft-checked for these hosts
HELO hard-checked for these hosts
host name looked up for these hosts
order of DNS and local name lookups
reject connection from these hosts

144 Main configuration (14)

hosts_treat as_local
local_scan_timeout
message_size_limit
percent_hack_domains
spamd_address
strict_acl_vars

14.12 Callout cache

callout_domain_negative_expire
callout_domain_positive_expire
callout_negative_expire
callout_positive_expire
callout_random_local_part

14.13 TLS

gnutls_require_kx
gnutls_require_mac
gnutls_require_protocols
gnutls_compat_mode
openssl_options
tls_advertise_hosts
tls_certificate

tls_crl

tls_dhparam
tls_on_connect_ports
tls_privatekey
tls_remember_esmtp
tls_require_ciphers
tls_try verify _hosts
tls_verify_certificates
tls_verify _hosts

14.14 Local user handling

finduser_retries
gecos_name
gecos_pattern
max_username_length
unknown_login
unknown_username
uucp_from_pattern
uucp_from_sender

useful in some cluster configurations
timeout forlocal_scan()

for all messages

recognize %-hack for these domains
set interface to SpamAssassin
object to unset ACL variables

timeout for negative domain cache item
timeout for positive domain cache item
timeout for negative address cache item
timeout for positive address cache item
string to use for “random” testing

control GnuTLS key exchanges
control GnuTLS MAC algorithms
control GnuTLS protocols

use GnuTLS compatibility mode
adjust OpenSSL compatibility options
advertise TLS to these hosts
location of server certificate
certificate revocation list

DH parameters for server
specify SSMTP (SMTPS) ports
location of server private key
don't reset after starting TLS
specify acceptable ciphers

try to verify client certificate
expected client certificates

insist on client certificate verify

useful in NIS environments
used when creatin§ender:

ditto

for systems that truncate

used when no login name found
ditto

for recognizing “From ” lines
ditto

14.15 All incoming messages (SMTP and non-SMTP)

header_maxsize
header_line_maxsize
message_size_limit
percent_hack _domains
received_header_text
received_headers_max
recipients_max
recipients_max_reject

total size of message header
individual header line limit

applies to all messages

recognize %-hack for these domains
expanded to makiReceived:

for mail loop detection

limit per message

permanently reject excess recipients

145 Main configuration (14)

14.16 Non-SMTP incoming messages

receive_timeout

14.17 Incoming SMTP messages
See also th@olicy controlssection above.

for non-SMTP messages

host_lookup

host_lookup_order
recipient_unqualified_hosts
rfc1413_hosts
rfc1413_query_timeout
sender_unqualified_hosts
smtp_accept_keepalive
smtp_accept_max
smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection
smtp_accept_reserve
smtp_active_hostname
smtp_banner
smtp_check_spool_space
smtp_connect_backlog
smtp_enforce_sync
smtp_etrn_command
smtp_etrn_serialize
smtp_load_reserve
smtp_max_unknown_commands
smtp_ratelimit_hosts
smtp_ratelimit_mail
smtp_ratelimit_rcpt
smtp_receive_timeout
smtp_reserve_hosts
smtp_return_error_details

14.18 SMTP extensions

accept_8bitmime
auth_advertise_hosts
ignore_fromline_hosts
ignore_fromline_local
pipelining_advertise_hosts
tls_advertise_hosts

14.19 Processing messages

allow_domain_literals
allow_mx_to_ip
allow _utf8 domains
check_rfc2047_length
delivery_date_remove
envelope_to_remove

extract_addresses_remove_arguments

headers_charset
qualify_domain

host name looked up for these hosts
order of DNS and local name lookups
may send unqualified recipients
make ident calls to these hosts

zero disables ident calls

may send unqualified senders

some TCP/IP magic

simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection
connections from one host

queue mail if more connections
queue if more messages per connection
only reserve hosts if more connections
host name to use in messages

text for welcome banner

from SIZE on MAIL command
passed to TCP/IP stack

of SMTP command/responses

what to run for ETRN

only one at once

only reserve hosts if this load

before dropping connection

apply ratelimiting to these hosts
ratelimit for MAIL commands

ratelimit for RCPT commands

per command or data line

these are the reserve hosts

give detail on rejections

advertise 8BITMIME

advertise AUTH to these hosts
allow “From ” from these hosts
allow “From ” from local SMTP
advertise pipelining to these hosts
advertise TLS to these hosts

recognize domain literal syntax

allow MX to point to IP address

in addresses

check length of RFC 2047 “encoded words”
from incoming messages

from incoming messages

affects-t processing

default for translations

default for senders

146 Main configuration (14)

qualify_recipient
return_path_remove
strip_excess_angle_brackets
strip_trailing_dot
untrusted_set_sender

14.20 System filter

system_filter
system_filter_directory_transport
system _filter_file_transport
system_filter_group
system_filter_pipe_transport
system_filter_reply_transport
system_filter_user

14.21 Routing and delivery

disable_ipv6
dns_again_means_nonexist
dns_check_names_pattern
dns_ipv4_lookup
dns_retrans

dns_retry
dns_use_edns0
hold_domains
local_interfaces
gueue_domains
gueue_only
gueue_only_file
gueue_only_load
gueue_only_load_latch
gueue_only_override
gueue_run_in_order
gueue_run_max
gueue_smtp_domains
remote_max_parallel
remote_sort_domains
retry_data_expire
retry_interval_max

default for recipients

from incoming messages

in addresses

at end of addresses

untrusted can set envelope sender

locate system filter

transport for delivery to a directory
transport for delivery to a file
group for filter running

transport for delivery to a pipe
transport for autoreply delivery
user for filter running

do no IPv6 processing

for broken domains

pre-DNS syntax check

only v4 lookup for these domains
parameter for resolver

parameter for resolver

parameter for resolver

hold delivery for these domains

for routing checks

no immediate delivery for these

no immediate delivery at all

no immediate delivery if file exists
no immediate delivery if load is high
don’t re-evaluate load for each message
allow command line to override
order of arrival

of simultaneous queue runners

no immediate SMTP delivery for these
parallel SMTP delivery per message
order of remote deliveries

timeout for retry data

safety net for retry rules

14.22 Bounce and warning messages

bounce_message_file
bounce_message_text
bounce_return_body
bounce_return_message
bounce_return_size_limit
bounce_sender_authentication
dsn_from

errors_copy

errors_reply_to
delay_warning
delay_warning_condition
ignore_bounce_errors_after
smtp_return_error_details
warn_message_file

content of bounce

content of bounce

include body if returning message
include original message in bounce
limit on returned message

send authenticated sender with bounce
setFrom: contents in bounces

copy bounce messages

Reply-to:in bounces

time schedule

condition for warning messages
discard undeliverable bounces

give detail on rejections

content of warning message

147 Main configuration (14)

14.23 Alphabetical list of main options

Those options that undergo string expansion before use are marked with T.

| accept_8bitmime Use:main Type:boolean Default:false

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to
accept the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a
protocol converter, and it takes no steps to do anything special with messages received by this route.
Consequently, this option is turned off by default.

acl_not_smtp Use:main Type:stringt Default;unset

This option defines the ACL that is run when a non-SMTP message has been read and is on the point
of being accepted. See chapter 40 for further details.

acl_not_smtp_mime Use:main Type:stringt Default:unset

This option defines the ACL that is run for individual MIME parts of non-SMTP messages. It
operates in exactly the same wayaak smtp_mimeoperates for SMTP messages.

acl_not_smtp_start Use:main Type:stringt Default;unset

This option defines the ACL that is run before Exim starts reading a non-SMTP message. See chapter
40 for further details.

acl_smtp_auth Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP AUTH command is received. See chapter 40
for further details.

acl_smtp_connect Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP connection is received. See chapter 40 for
further detalils.

acl_smtp_data Use:main Type:stringt Default:unset

This option defines the ACL that is run after an SMTP DATA command has been processed and the
message itself has been received, but before the final acknowledgment is sent. See chapter 40 for
further detalils.

acl_smtp_etrn Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP ETRN command is received. See chapter 40
for further details.

acl_smtp_expn Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP EXPN command is received. See chapter 40
for further details.

148 Main configuration (14)

acl_smtp_helo Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP EHLO or HELO command is received. See
chapter 40 for further details.

acl_smtp_mail Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP MAIL command is received. See chapter 40
for further details.

acl_smtp_mailauth Use:main Type:stringt Default:unset

This option defines the ACL that is run when there is an AUTH parameter on a MAIL command. See
chapter 40 for details of ACLs, and chapter 33 for details of authentication.

acl_smtp_mime Use:main Type:stringt Default:unset

This option is available when Exim is built with the content-scanning extension. It defines the ACL
that is run for each MIME part in a message. See section 41.4 for details.

acl_smtp_predata Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP DATA command is received, before the
message itself is received. See chapter 40 for further details.

acl_smtp_quit Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP QUIT command is received. See chapter 40
for further details.

acl_smtp_rcpt Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP RCPT command is received. See chapter 40
for further details.

acl_smtp_starttls Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP STARTTLS command is received. See
chapter 40 for further details.

acl_smtp_vrfy Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP VRFY command is received. See chapter 40
for further details.

admin_groups Use:main Type:string listf Default:unset

This option is expanded just once, at the start of Exim’s processing. If the current group or any of the
supplementary groups of an Exim caller is in this colon-separated list, the caller has admin privileges.
If all your system programmers are in a specific group, for example, you can give them all Exim
admin privileges by putting that group admin_groups However, this does not permit them to read

149 Main configuration (14)

Exim’s spool files (whose group owner is the Exim gid). To permit this, you have to add individuals to
the Exim group.

allow_domain_literals Use:main Type:boolean Default:false

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option is
not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by IP address, you need
to setallow_domain_literals true, and also to ad@][] to the list of local domains (defined in the
named domain listocal_domainsin the default configuration). This “magic string” matches the
domain literal form of all the local host’s IP addresses.

allow_mx_to_ip Use:main Type:boolean Default:false

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and

rejects this, giving an error message that explains the mis-configuration. However, some other MTAs
support this practice, so to avoid “Why can’t Exim do this?” complaiatfgw_mx_to_ip exists, in

order to enable this heinous activity. It is not recommended, except when you have no other choice.

allow_utf8_domains Use:main Type:boolean Default:false

Lots of discussion is going on about internationalized domain names. One camp is strongly in favour
of just using UTF-8 characters, and it seems that at least two other MTAs permit this. This option
allows Exim users to experiment if they wish.

If it is set true, Exim’s domain parsing function allows valid UTF-8 multicharacters to appear in
domain name components, in addition to letters, digits, and hyphens. However, just setting this option
is not enough; if you want to look up these domain names in the DNS, you must also adjust the value
of dns_check_names_patterno match the extended form. A suitable setting is:

dns_check_names_pattern = (?)"(?>(?(L)\.]())[a-z0-9\xcO-\xff]\
(?>[-a-z0-9\x80-\xff]*[a-z0-9\x80-\xbf]) ?)+$

Alternatively, you can just disable this feature by setting

dns_check_names_pattern =
That is, set the option to an empty string so that no check is done.

auth_advertise_hosts Use:main Type:host listf Default:*

If any server authentication mechanisms are configured, Exim advertises them in response to an
EHLO command only if the calling host matches this list. Otherwise, Exim does not advertise AUTH.
Exim does not accept AUTH commands from clients to which it has not advertised the availability of
AUTH. The advertising of individual authentication mechanisms can be controlled by the use of the
server_advertise_conditiongeneric authenticator option on the individual authenticators. See chap-
ter 33 for further details.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AUTH is advertised, even though it may not be needed (the host may accept mess-
ages from hosts on its local LAN without authentication, for example). diith_advertise _hosts

option can be used to make these clients more friendly by excluding them from the set of hosts to
which Exim advertises AUTH.

150 Main configuration (14)

If you want to advertise the availability of AUTH only when the connection is encrypted using TLS,
you can make use of the fact that the value of this option is expanded, with a setting like this:

auth_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}

If $tIs_cipheris empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is *, which matches all hosts.

| auto_thaw Use:main Type:time Default:0s

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on any
frozen message, other than a bounce message, if this much time has passed since it was frozen. This
may result in the message being re-frozen if nothing has changed since the last attempt. It is a way of
saying “keep on trying, even though there are big problems”.

Note: This is an old option, which predatémeout_frozen_afterandignore_bounce_errors_after
It is retained for compatibility, but it is not thought to be very useful any more, and its use should
probably be avoided.

av_scanner Use:main Type:string Default:see be|OV\+

This option is available if Exim is built with the content-scanning extension. It specifies which
anti-virus scanner to use. The default value is:

sophie:/var/run/sophie

If the value ofav_scannerstarts with a dollar character, it is expanded before use. See section 41.1
for further details.

bi_command Use:main Type:string Default: unset|

This option supplies the name of a command that is run when Exim is called witbitbgtion (see
chapter 5). The string value is just the command name, it is not a complete command line. If an
argument is required, it must come from tb& command line option.

bounce_message_file Use:main Type:string Default: unset|

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file’s contents are given in chapter 46. Seamaismessage_file

bounce_message_text Use:main Type:string Default: unset

When this option is set, its contents are included in the default bounce message immediately after
“This message was created automatically by mail delivery software.” It is not uskduifice_
message_filés set.

bounce_return_body Use:main Type:boolean Default:true

This option controls whether the body of an incoming message is included in a bounce message when
bounce_return_messagés true. The default setting causes the entire message, both header and body,
to be returned (subject to the value lmdunce_return_size_limi). If this option is false, only the
message header is included. In the case of a non-SMTP message containing an error that is detected
during reception, only those header lines preceding the point at which the error was detected are
returned.

151 Main configuration (14)

bounce_return_message Use:main Type:boolean Default:true

If this option is set false, none of the original message is included in bounce messages generated by
Exim. See alsbounce_return_size_limitandbounce_return_body.

bounce_return_size_limit Use:main Type:integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of bounce
messages whdmounce_return_messagés true. The limit should be less than the value of the global
message_size_limiand of anymessage_size_limisettings on transports, to allow for the bounce

text that Exim generates. If this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit, it
is truncated, and a comment pointing this out is added at the top. The actual cutoff may be greater
than the value given, owing to the use of buffering for transferring the message in chunks (typically
8K in size). The idea is to save bandwidth on those undeliverable 15-megabyte messages.

bounce_sender_authentication Use:main Type:string Default: unset|

This option provides an authenticated sender address that is sent with any bounce messages generated
by Exim that are sent over an authenticated SMTP connection. A typical setting might be:

bounce_sender_authentication = mailer-daemon@my.domain.example
which would cause bounce messages to be sent using the SMTP command:
MAIL FROM:<> AUTH=mailer-daemon@my.domain.example

The value obounce_sender_authenticatiomust always be a complete email address.

callout_domain_negative_expire Use:main Type:time Default: 3h

This option specifies the expiry time for negative callout cache data for a domain. See section 40.42
for details of callout verification, and section 40.44 for details of the caching.

callout_domain_positive_expire Use:main Type:time Default: 7d

This option specifies the expiry time for positive callout cache data for a domain. See section 40.42
for details of callout verification, and section 40.44 for details of the caching.

callout_negative_expire Use:main Type:time Default: 2h

This option specifies the expiry time for negative callout cache data for an address. See section 40.42
for details of callout verification, and section 40.44 for details of the caching.

callout_positive_expire Use:main Type:time Default:24h

This option specifies the expiry time for positive callout cache data for an address. See section 40.42
for details of callout verification, and section 40.44 for details of the caching.

| callout_random_local_part Use:main Type:stringt Default:see beIovx}

This option defines the “random” local part that can be used as part of callout verification. The default
value is

$primary_host_name-$tod_epoch-testing

152 Main configuration (14)

See section 40.43 for details of how this value is used.

| check_log_inodes Use:main Type:integer Default: 0 |

Seecheck_spool_spaceelow.

| check_log_space Use:main Type:integer Default: 0 |

Seecheck_spool_spackelow.

| check_rfc2047_length Use:main Type:boolean Default:true |

RFC 2047 defines a way of encoding non-ASCII characters in headers using a system of “encoded
words”. The RFC specifies a maximum length for an encoded word; strings to be encoded that exceed
this length are supposed to use multiple encoded words. By default, Exim does not recognize encoded
words that exceed the maximum length. However, it seems that some software, in violation of the
RFC, generates overlong encoded wordschéck rfc2047_lengthis set false, Exim recognizes
encoded words of any length.

| check_spool_inodes Use:main Type:integer Default:0 |

Seecheck_spool_spacbkelow.

| check_spool_space Use:main Type:integer Default:0 |

The fourcheck_...options allow for checking of disk resources before a message is accepted.

When any of these options are set, they apply to all incoming messages. If you want to apply different
checks to different kinds of message, you can do so by testing the varbiesnodes$log_space
$spool_inodesand$spool_spacén an ACL with appropriate additional conditions.

check_spool_spacandcheck_spool_inodegheck the spool partition if either value is greater than
zero, for example:

check_spool_space = 10M
check_spool_inodes = 100

The spool partition is the one that contains the directory defined by SPOOL_DIRECTORY in
Local/Makefile It is used for holding messages in transit.

check_log_spacendcheck_log_inodesheck the partition in which log files are written if either is
greater than zero. These should be set onlpdf file_path and spool_directory refer to different
partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_spacealue, and the check is performed evenhick_spool_spaces zero, unlesso_
smtp_check_spool_spaces set.

The values forcheck_spool_spacand check_log_spacere held as a number of kilobytes. If a
non-multiple of 1024 is specified, it is rounded up.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message is
written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error message of
any kind.

153 Main configuration (14)

daemon_smtp_ports Use:main Type:string Default:snt p |

This option specifies one or more default SMTP ports on which the Exim daemon listens. See chapter
13 for details of how it is used. For backward compatibilthgemon_smtp_port (singular) is a
synonym.

daemon_startup_retries Use:main Type:integer Default:9 |

This option, along witlrdaemon_startup_sleepcontrols the retrying done by the daemon at startup
when it cannot immediately bind a listening socket (typically because the socket is already in use):
daemon_startup_retriesdefines the number of retries after the first failure, dagmon_startup
sleepdefines the length of time to wait between retries.

| daemon_startup_sleep Use:main Type:time Default: 3OS|

Seedaemon_startup_retries

| delay_warning Use:main Type:time list Default:24h |

When a message is delayed, Exim sends a warning message to the sender at intervals specified by this
option. The data is a colon-separated list of times after which to send warning messages. If the value
of the option is an empty string or a zero time, no warnings are sent. Up to 10 times may be given. If a
message has been on the queue for longer than the last time, the last interval between the times is
used to compute subsequent warning times. For example, with

delay_warning = 4h:8h:24h
the first message is sent after 4 hours, the second after 8 hours, and the third one after 24 hours. After
that, messages are sent every 16 hours, because that is the interval between the last two times on the
list. If you set just one time, it specifies the repeat interval. For example, with:

delay_warning = 6h

messages are repeated every six hours. To stop warnings after a given time, set a very large time at the
end of the list. For example:

delay_warning = 2h:12h:99d

delay_warning_condition Use:main Type:stringt Default:see belovxf

The string is expanded at the time a warning message might be sent. If all the deferred addresses have
the same domain, it is set $domainduring the expansion. Otherwi$elomainis empty. If the result

of the expansion is a forced failure, an empty string, or a string matching any of “0”, “no” or “false”
(the comparison being done caselessly) then the warning message is not sent. The default is:

delay_warning_condition = ${if or {\
{'eq{$h_list-id:$h_list-post:$h_list-subscribe:}{})\
{ match{$h_precedence:}{(?i)bulk|list|junk} }\
{ match{$h_auto-submitted:}{(?i)auto-generated|auto-replied} }\

}{no}yes}}

This suppresses the sending of warnings for messages that cum&iD:, List-Post; or List-
Subscribeheaders, or have “bulk”, “list” or “junk” in @recedenceheader, or have “auto-generated”
or “auto-replied” in arAuto-Submittedheader.

154 Main configuration (14)

deliver_drop_privilege Use:main Type:boolean Default:false

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as the
Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is viable
in certain types of configuration. There is a discussion about the use of root privilege in chapter 52.

deliver_queue_load_max Use:main Type:fixed-point Default: unset

When this option is set, a queue run is abandoned if the system load average becomes greater than the
value of the option. The option has no effect on ancient operating systems on which Exim cannot
determine the load average. See giseue_only loadandsmtp_load_reserve

delivery_date _remove Use:main Type:boolean Default:true

Exim’s transports have an option for addin@alivery-date:header to a message when it is delivered,

in exactly the same way d&eturn-pathis handledDelivery-date:records the actual time of delivery.

Such headers should not be present in incoming messages, and this option causes them to be removed
at the time the message is received, to avoid any problems that might occur when a delivered message
is subsequently sent on to some other recipient.

disable_fsync Use:main Type:boolean Default:false

This option is available only if Exim was built with the compile-time option ENABLE_DISABLE_
FSYNC. When this is not set, a referencedisable_fsyncin a runtime