Internet-Draft | KangarooTwelve | June 2023 |
Viguier, et al. | Expires 22 December 2023 | [Page] |
This document defines three eXtendable Output Functions (XOF), hash functions with output of arbitrary length, named TurboSHAKE128, TurboSHAKE256 and KangarooTwelve.¶
All three functions provide efficient and secure hashing primitives, and the last is able to exploit the parallelism of the implementation in a scalable way.¶
This document builds up on the definitions of the permutations and of the sponge construction in [FIPS 202], and is meant to serve as a stable reference and an implementation guide.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 22 December 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document defines the TurboSHAKE128, TurboSHAKE256 [TURBOSHAKE] and KangarooTwelve [K12] eXtendable Output Functions (XOF), i.e., a hash function generalization that can return an output of arbitrary length. Both TurboSHAKE128 and TurboSHAKE256 are based on a Keccak-p permutation specified in [FIPS202] and have a higher speed than the SHA-3 and SHAKE functions.¶
TurboSHAKE is a sponge function family that makes use of Keccak-p[n_r=12,b=1600], a round-reduced version of the permutation used in SHA-3. Similarly to the SHAKE's, it proposes two security strengths: 128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256. Halving the number of rounds compared to the original SHAKE functions makes TurboSHAKE roughly twice faster.¶
The SHA-3 and SHAKE functions process data in a serial manner and are strongly limited in exploiting available parallelism in modern CPU architectures. Similar to ParallelHash [SP800-185], KangarooTwelve splits the input message into fragments. It then applies TurboSHAKE128 on each of them separately before applying TurboSHAKE128 again on the combination of the first fragment and the digests. It makes use of Sakura coding for ensuring soundness of the tree hashing mode [SAKURA]. The use of TurboSHAKE128 in KangarooTwelve makes it faster than ParallelHash.¶
The security of TurboSHAKE128, TurboSHAKE256 and KangarooTwelve builds up on the scrutiny that Keccak has received since its publication [KECCAK_CRYPTANALYSIS][TURBOSHAKE].¶
With respect to [FIPS202] and [SP800-185] functions, TurboSHAKE128, TurboSHAKE256 and KangarooTwelve feature the following advantages:¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].¶
The following notations are used throughout the document:¶
In the following, x and y are byte strings of equal length:¶
In the following, x and y are integers:¶
TurboSHAKE is a family of eXtendable Output Functions (XOF). This document focuses on only two instances, namely, TurboSHAKE128 and TurboSHAKE256, although the original definition includes a wider range of instances parameterized by their capacity [TURBOSHAKE].¶
An instance of TurboSHAKE takes as parameters a byte-string M, an OPTIONAL byte D and a positive integer L where¶
By default, the Domain separation byte is `1F`. For an API that does not support a domain separation byte, D MUST be the `1F`.¶
TurboSHAKE makes use of the permutation Keccak-p[1600,n_r=12], i.e., the permutation used in SHAKE and SHA-3 functions reduced to its last n_r=12 rounds and specified in FIPS 202, Sections 3.3 and 3.4 [FIPS202]. KP denotes this permutation.¶
Similarly to SHAKE128, TurboSHAKE128 is a sponge function calling this permutation KP with a rate of 168 bytes or 1344 bits. It follows that TurboSHAKE128 has a capacity of 1600 - 1344 = 256 bits or 32 bytes. Respectively to SHAKE256, TurboSHAKE256 makes use of a rate of 136 bytes or 1088 bits, and has a capacity of 512 bits or 64 bytes.¶
+-------------+--------------+ | Rate | Capacity | +----------------+-------------+--------------+ | TurboSHAKE128 | 168 Bytes | 32 Bytes | | | | | | TurboSHAKE256 | 136 Bytes | 64 Bytes | +----------------+-------------+--------------+¶
We now describe the operations inside TurboSHAKE128.¶
TurboSHAKE256 performs the same steps but makes use of 136-byte blocks with respect to padding, absorbing, and squeezing phases.¶
The definition of the TurboSHAKE functions equivalently implements the pad10*1 rule. While M can be empty, the D byte is always present and is in the `01`-`7F` range. This last byte serves as domain separation and integrates the first bit of padding of the pad10*1 rule (hence it cannot be `00`). Additionally, it must leave room for the second bit of padding (hence it cannot have the MSB set to 1), should it be the last byte of the block. For more details, refer to Section 6.1 of [K12] and Section 3 of [TURBOSHAKE].¶
The pseudocode versions of TurboSHAKE128 and TurboSHAKE256 are provided respectively in Appendix A.2 and Appendix A.3.¶
KangarooTwelve is an eXtendable Output Function (XOF). It takes as parameters two byte-strings (M, C) and a positive integer L where¶
The Customization string MAY serve as domain separation. It is typically a short string such as a name or an identifier (e.g. URI, ODI...)¶
By default, the Customization string is the empty string. For an API that does not support a customization string parameter, C MUST be the empty string.¶
On top of the sponge function TurboSHAKE128, KangarooTwelve uses a Sakura-compatible tree hash mode [SAKURA]. First, merge M and the OPTIONAL C to a single input string S in a reversible way. length_encode( |C| ) gives the length in bytes of C as a byte-string. See Section 3.3.¶
S = M || C || length_encode( |C| )¶
Then, split S into n chunks of 8192 bytes.¶
S = S_0 || .. || S_(n-1) |S_0| = .. = |S_(n-2)| = 8192 bytes |S_(n-1)| <= 8192 bytes¶
From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 .. CV_(n-1). In order to be optimally efficient, this computation SHOULD exploit the parallelism available on the platform such as SIMD instructions.¶
CV_i = TurboSHAKE128( S_i, `0B`, 32 )¶
Compute the final node: FinalNode.¶
FinalNode = S_0 || `03 00 00 00 00 00 00 00` FinalNode = FinalNode || CV_1 .. FinalNode = FinalNode || CV_(n-1) FinalNode = FinalNode || length_encode(n-1) FinalNode = FinalNode || `FF FF`¶
Finally, KangarooTwelve output is retrieved:¶
KangarooTwelve( M, C, L ) = TurboSHAKE128( FinalNode, `07`, L )¶
KangarooTwelve( M, C, L ) = TurboSHAKE128( FinalNode, `06`, L )¶
The following figure illustrates the computation flow of KangarooTwelve for |S| <= 8192 bytes:¶
+--------------+ TurboSHAKE128(.., `07`, L) | S |-----------------------------> output +--------------+¶
The following figure illustrates the computation flow of KangarooTwelve for |S| > 8192 bytes and where TurboSHAKE128 and length_encode( x ) are abbreviated as respectively TSHK128 and l_e( x ) :¶
+--------------+ | S_0 | +--------------+ || +--------------+ | `03`||`00`^7 | +--------------+ || +---------+ TSHK128(..,`0B`,32) +--------------+ | S_1 |---------------------->| CV_1 | +---------+ +--------------+ || +---------+ TSHK128(..,`0B`,32) +--------------+ | S_2 |---------------------->| CV_2 | +---------+ +--------------+ || .. .. || +---------+ TSHK128(..,`0B`,32) +--------------+ | S_(n-1) |----------------------->| CV_(n-1) | +---------+ +--------------+ || +--------------+ | l_e( n-1 ) | +--------------+ || +--------------+ | `FF FF` | +--------------+ | TSHK128(.., `06`, L) +--------------------> output¶
A pseudocode version is provided in Appendix A.4.¶
The table below gathers the values of the domain separation bytes used by the tree hash mode:¶
+--------------------+------------------+ | Type | Byte | +--------------------+------------------+ | SingleNode | `07` | | | | | IntermediateNode | `0B` | | | | | FinalNode | `06` | +--------------------+------------------+¶
The function length_encode takes as inputs a non-negative integer x < 256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n where¶
x = sum of 256**i * x_i for i from 0 to n-1¶
and where n is the smallest non-negative integer such that x < 256**n. n is also the length of x_(n-1) || .. || x_0.¶
As example, length_encode(0) = `00`, length_encode(12) = `0C 01` and length_encode(65538) = `01 00 02 03`¶
A pseudocode version is as follows where { b } denotes the byte of numerical value b.¶
length_encode(x): S = `00`^0 while x > 0 S = { x mod 256 } || S x = x / 256 S = S || { |S| } return S end¶
Implementing a MAC with KangarooTwelve SHOULD use a HASH-then-MAC construction. This document recommends a method called HopMAC, defined as follows:¶
HopMAC(Key, M, C, L) = K12(Key, K12(M, C, 32), L)¶
Similarly to HMAC, HopMAC consists of two calls: an inner call compressing the message M and the optional customization string C to a digest, and an outer call computing the tag from the key and the digest.¶
Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless and does not require additional protection against side channel attacks (SCA). Consequently, in an implementation that has to protect the HopMAC key against SCA only the outer call does need protection, and this amounts to a single execution of the underlying permutation.¶
In any case, KangarooTwelve MAY be used to compute a MAC with the key reversibly prepended or appended to the input. For instance, one MAY compute a MAC on short messages simply calling KangarooTwelve with the key as the customization string, i.e., MAC = K12(M, Key, L).¶
Test vectors are based on the repetition of the pattern `00 01 .. FA` with a specific length. ptn(n) defines a string by repeating the pattern `00 01 .. FA` as many times as necessary and truncated to n bytes e.g.¶
Pattern for a length of 17 bytes: ptn(17) = `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`¶
Pattern for a length of 17**2 bytes: ptn(17**2) = `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25`¶
TurboSHAKE128(M=`00`^0, D=`07`, 32): `5A 22 3A D3 0B 3B 8C 66 A2 43 04 8C FC ED 43 0F 54 E7 52 92 87 D1 51 50 B9 73 13 3A DF AC 6A 2F` TurboSHAKE128(M=`00`^0, D=`07`, 64): `5A 22 3A D3 0B 3B 8C 66 A2 43 04 8C FC ED 43 0F 54 E7 52 92 87 D1 51 50 B9 73 13 3A DF AC 6A 2F FE 27 08 E7 30 61 E0 9A 40 00 16 8B A9 C8 CA 18 13 19 8F 7B BE D4 98 4B 41 85 F2 C2 58 0E E6 23` TurboSHAKE128(M=`00`^0, D=`07`, 10032), last 32 bytes: `75 93 A2 80 20 A3 C4 AE 0D 60 5F D6 1F 5E B5 6E CC D2 7C C3 D1 2F F0 9F 78 36 97 72 A4 60 C5 5D` TurboSHAKE128(M=ptn(1 bytes), D=`07`, 32): `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51 3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5` TurboSHAKE128(M=ptn(17 bytes), D=`07`, 32): `AC BD 4A A5 75 07 04 3B CE E5 5A D3 F4 85 04 D8 15 E7 07 FE 82 EE 3D AD 6D 58 52 C8 92 0B 90 5E` TurboSHAKE128(M=ptn(17**2 bytes), D=`07`, 32): `7A 4D E8 B1 D9 27 A6 82 B9 29 61 01 03 F0 E9 64 55 9B D7 45 42 CF AD 74 0E E3 D9 B0 36 46 9E 0A` TurboSHAKE128(M=ptn(17**3 bytes), D=`07`, 32): `74 52 ED 0E D8 60 AA 8F E8 E7 96 99 EC E3 24 F8 D9 32 71 46 36 10 DA 76 80 1E BC EE 4F CA FE 42` TurboSHAKE128(M=ptn(17**4 bytes), D=`07`, 32): `CA 5F 1F 3E EA C9 92 CD C2 AB EB CA 0E 21 67 65 DB F7 79 C3 C1 09 46 05 5A 94 AB 32 72 57 35 22` TurboSHAKE128(M=ptn(17**5 bytes), D=`07`, 32): `E9 88 19 3F B9 11 9F 11 CD 34 46 79 14 E2 A2 6D A9 BD F9 6C 8B EF 07 6A EE AD 1A 89 7B 86 63 83` TurboSHAKE128(M=ptn(17**6 bytes), D=`07`, 32): `9C 0F FB 98 7E EE ED AD FA 55 94 89 87 75 6D 09 0B 67 CC B6 12 36 E3 06 AC 8A 24 DE 1D 0A F7 74` TurboSHAKE128(M=`00`^0, D=`0B`, 32): `8B 03 5A B8 F8 EA 7B 41 02 17 16 74 58 33 2E 46 F5 4B E4 FF 83 54 BA F3 68 71 04 A6 D2 4B 0E AB` TurboSHAKE128(M=`00`^0, D=`06`, 32): `C7 90 29 30 6B FA 2F 17 83 6A 3D 65 16 D5 56 63 40 FE A6 EB 1A 11 39 AD 90 0B 41 24 3C 49 4B 37` TurboSHAKE128(M=`FF`, D=`06`, 32): `8E C9 C6 64 65 ED 0D 4A 6C 35 D1 35 06 71 8D 68 7A 25 CB 05 C7 4C CA 1E 42 50 1A BD 83 87 4A 67` TurboSHAKE128(M=`FF FF FF`, D=`06`, 32): `3D 03 98 8B B5 9E 68 18 51 A1 92 F4 29 AE 03 98 8E 8F 44 4B C0 60 36 A3 F1 A7 D2 CC D7 58 D1 74` TurboSHAKE128(M=`FF FF FF FF FF FF FF`, D=`06`, 32): `05 D9 AE 67 3D 5F 0E 48 BB 2B 57 E8 80 21 A1 A8 3D 70 BA 85 92 3A A0 4C 12 E8 F6 5B A1 F9 45 95`¶
TurboSHAKE256(M=`00`^0, D=`07`, 64): `4A 55 5B 06 EC F8 F1 53 8C CF 5C 95 15 D0 D0 49 70 18 15 63 A6 23 81 C7 F0 C8 07 A6 D1 BD 9E 81 97 80 4B FD E2 42 8B F7 29 61 EB 52 B4 18 9C 39 1C EF 6F EE 66 3A 3C 1C E7 8B 88 25 5B C1 AC C3` TurboSHAKE256(M=`00`^0, D=`07`, 10032), last 32 bytes: `40 22 1A D7 34 F3 ED C1 B1 06 BA D5 0A 72 94 93 15 B3 52 BA 39 AD 98 B5 B3 C2 30 11 63 AD AA D0` TurboSHAKE256(M=ptn(17 bytes), D=`07`, 64): `66 D3 78 DF E4 E9 02 AC 4E B7 8F 7C 2E 5A 14 F0 2B C1 C8 49 E6 21 BA E6 65 79 6F B3 34 6E 6C 79 75 70 5B B9 3C 00 F3 CA 8F 83 BC A4 79 F0 69 77 AB 3A 60 F3 97 96 B1 36 53 8A AA E8 BC AC 85 44` TurboSHAKE256(M=ptn(17**2 bytes), D=`07`, 64): `C5 21 74 AB F2 82 95 E1 5D FB 37 B9 46 AC 36 BD 3A 6B CC 98 C0 74 FC 25 19 9E 05 30 42 5C C5 ED D4 DF D4 3D C3 E7 E6 49 1A 13 17 98 30 C3 C7 50 C9 23 7E 83 FD 9A 3F EC 46 03 FF 57 E4 22 2E F2` TurboSHAKE256(M=ptn(17**3 bytes), D=`07`, 64): `62 A5 A0 BF F0 64 26 D7 1A 7A 3E 9E 3F 2F D6 E2 52 FF 3F C1 88 A6 A5 36 EC A4 5A 49 A3 43 7C B3 BC 3A 0F 81 49 C8 50 E6 E7 F4 74 7A 70 62 7F D2 30 30 41 C6 C3 36 30 F9 43 AD 92 F8 E1 FF 43 90` TurboSHAKE256(M=ptn(17**4 bytes), D=`07`, 64): `52 3C 06 47 18 2D 89 41 F0 DD 5C 5C 0A B6 2D 4F C2 95 61 61 53 96 BB 5B 9A 9D EB 02 2B 80 C5 BF 2D 83 A3 BB 36 FF C0 4F AC 58 CF 11 49 C6 6D EC 4A 59 52 6E 51 F2 95 96 D8 24 42 1A 4B 84 B4 4D` TurboSHAKE256(M=ptn(17**5 bytes), D=`07`, 64): `D1 14 A1 C1 A2 08 FF 05 FD 49 D0 9E E0 35 46 5D 86 54 7E BA D8 E9 AF 4F 8E 87 53 70 57 3D 6B 7B B2 0A B9 60 63 5A B5 74 E2 21 95 EF 9D 17 1C 9A 28 01 04 4B 6E 2E DF 27 2E 23 02 55 4B 3A 77 C9` TurboSHAKE256(M=ptn(17**6 bytes), D=`07`, 64): `1E 51 34 95 D6 16 98 75 B5 94 53 A5 94 E0 8A E2 71 CA 20 E0 56 43 C8 8A 98 7B 5B 6A B4 23 ED E7 24 0F 34 F2 B3 35 FA 94 BC 4B 0D 70 E3 1F B6 33 B0 79 84 43 31 FE A4 2A 9C 4D 79 BB 8C 5F 9E 73` TurboSHAKE256(M=`00`^0, D=`0B`, 64): `C7 49 F7 FB 23 64 4A 02 1D 35 65 3D 1B FD F7 47 CE CE 5F 97 39 F9 A3 44 AD 16 9F 10 90 6C 68 17 C8 EE 12 78 4E 42 FF 57 81 4E FC 1C 89 87 89 D5 E4 15 DB 49 05 2E A4 3A 09 90 1D 7A 82 A2 14 5C` TurboSHAKE256(M=`00`^0, D=`06`, 64): `FF 23 DC CD 62 16 8F 5A 44 46 52 49 A8 6D C1 0E 8A AB 4B D2 6A 22 DE BF 23 48 02 0A 83 1C DB E1 2C DD 36 A7 DD D3 1E 71 C0 1F 7C 97 A0 D4 C3 A0 CC 1B 21 21 E6 B7 CE AB 38 87 A4 C9 A5 AF 8B 03` TurboSHAKE256(M=`FF`, D=`06`, 64): `73 8D 7B 4E 37 D1 8B 7F 22 AD 1B 53 13 E3 57 E3 DD 7D 07 05 6A 26 A3 03 C4 33 FA 35 33 45 52 80 F4 F5 A7 D4 F7 00 EF B4 37 FE 6D 28 14 05 E0 7B E3 2A 0A 97 2E 22 E6 3A DC 1B 09 0D AE FE 00 4B` TurboSHAKE256(M=`FF FF FF`, D=`06`, 64): `E5 53 8C DD 28 30 2A 2E 81 E4 1F 65 FD 2A 40 52 01 4D 0C D4 63 DF 67 1D 1E 51 0A 9D 95 C3 7D 71 35 EF 27 28 43 0A 9E 31 70 04 F8 36 C9 A2 38 EF 35 37 02 80 D0 3D CE 7F 06 12 F0 31 5B 3C BF 63` TurboSHAKE256(M=`FF FF FF FF FF FF FF`, D=`06`, 64): `B3 8B 8C 15 F4 A6 E8 0C D3 EC 64 5F 99 9F 64 98 AA D7 A5 9A 48 9C 1D EE 29 70 8B 4F 8A 59 E1 24 99 A9 6F 89 37 22 56 FE 52 2B 1B 97 47 2A DD 73 69 15 BD 4D F9 3B 21 FF E5 97 21 7E B3 C2 C6 D9`¶
KangarooTwelve(M=`00`^0, C=`00`^0, 32): `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51 3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5` KangarooTwelve(M=`00`^0, C=`00`^0, 64): `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51 3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5 42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71` KangarooTwelve(M=`00`^0, C=`00`^0, 10032), last 32 bytes: `E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8 34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D` KangarooTwelve(M=ptn(1 bytes), C=`00`^0, 32): `2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58 EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F` KangarooTwelve(M=ptn(17 bytes), C=`00`^0, 32): `6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B 0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88` KangarooTwelve(M=ptn(17**2 bytes), C=`00`^0, 32): `0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1 E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C` KangarooTwelve(M=ptn(17**3 bytes), C=`00`^0, 32): `CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77 2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0` KangarooTwelve(M=ptn(17**4 bytes), C=`00`^0, 32): `87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C 3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE` KangarooTwelve(M=ptn(17**5 bytes), C=`00`^0, 32): `84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82` KangarooTwelve(M=ptn(17**6 bytes), C=`00`^0, 32): `3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32 55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8` KangarooTwelve(M=`00`^0, C=ptn(1 bytes), 32): `FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30 45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83` KangarooTwelve(M=`FF`, C=ptn(41 bytes), 32): `D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C 20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4` KangarooTwelve(M=`FF FF FF`, C=ptn(41**2), 32): `C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0 13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74` KangarooTwelve(M=`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32): `75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9 DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF` KangarooTwelve(M=ptn(8191 bytes), C=`00`^0, 32): `1B 57 76 36 F7 23 64 3E 99 0C C7 D6 A6 59 83 74 36 FD 6A 10 36 26 60 0E B8 30 1C D1 DB E5 53 D6` KangarooTwelve(M=ptn(8192 bytes), C=`00`^0, 32): `48 F2 56 F6 77 2F 9E DF B6 A8 B6 61 EC 92 DC 93 B9 5E BD 05 A0 8A 17 B3 9A E3 49 08 70 C9 26 C3` KangarooTwelve(M=ptn(8192 bytes), C=ptn(8189 bytes), 32): `3E D1 2F 70 FB 05 DD B5 86 89 51 0A B3 E4 D2 3C 6C 60 33 84 9A A0 1E 1D 8C 22 0A 29 7F ED CD 0B` KangarooTwelve(M=ptn(8192 bytes), C=ptn(8190 bytes), 32): `6A 7C 1B 6A 5C D0 D8 C9 CA 94 3A 4A 21 6C C6 46 04 55 9A 2E A4 5F 78 57 0A 15 25 3D 67 BA 00 AE`¶
None.¶
This document is meant to serve as a stable reference and an implementation guide for the KangarooTwelve and TurboSHAKE eXtendable Output Functions. It relies on the cryptanalysis of Keccak and provides with the same security strength as their respective SHAKE functions.¶
+-------------------------------+ | security claim | +-----------------+-------------------------------+ | TurboSHAKE128 | 128 bits (same as SHAKE128) | | | | | KangarooTwelve | 128 bits (same as SHAKE128) | | | | | TurboSHAKE256 | 256 bits (same as SHAKE256) | +-----------------+-------------------------------+¶
To be more precise, KangarooTwelve is made of two layers:¶
This reasoning is detailed and formalized in [K12].¶
To achieve 128-bit security strength, the output L must be chosen long enough so that there are no generic attacks that violate 128-bit security. So for 128-bit (second) preimage security the output should be at least 128 bits, for 128-bit of security against multi-target preimage attacks with T targets the output should be at least 128+log_2(T) bits and for 128-bit collision security the output should be at least 256 bits.¶
Furthermore, when the output length is at least 256 bits, KangarooTwelve achieves NIST's post-quantum security level 2 [NISTPQ].¶
As a XOF, KangarooTwelve, TurboSHAKE128 or TurboSHAKE256 can naturally be used as a key derivation function. The input must be an injective encoding of secret and diversification material, and the output can be taken as the derived key(s).¶
Lastly, as KangarooTwelve uses TurboSHAKE128 with three values for D, namely 0x06, 0x07, and 0x0B. Protocols that use both KangarooTwelve and TurboSHAKE128, SHOULD avoid using these three values for D.¶
The sub-sections of this appendix contain pseudocode definitions of TurboSHAKE128, TurboSHAKE256 and KangarooTwelve. Standalone Python versions are also available in the Keccak Code Package [XKCP] and in [K12]¶
KP(state): RC[0] = `8B 80 00 80 00 00 00 00` RC[1] = `8B 00 00 00 00 00 00 80` RC[2] = `89 80 00 00 00 00 00 80` RC[3] = `03 80 00 00 00 00 00 80` RC[4] = `02 80 00 00 00 00 00 80` RC[5] = `80 00 00 00 00 00 00 80` RC[6] = `0A 80 00 00 00 00 00 00` RC[7] = `0A 00 00 80 00 00 00 80` RC[8] = `81 80 00 80 00 00 00 80` RC[9] = `80 80 00 00 00 00 00 80` RC[10] = `01 00 00 80 00 00 00 00` RC[11] = `08 80 00 80 00 00 00 80` for x from 0 to 4 for y from 0 to 4 lanes[x][y] = state[8*(x+5*y):8*(x+5*y)+8] for round from 0 to 11 # theta for x from 0 to 4 C[x] = lanes[x][0] C[x] ^= lanes[x][1] C[x] ^= lanes[x][2] C[x] ^= lanes[x][3] C[x] ^= lanes[x][4] for x from 0 to 4 D[x] = C[(x+4) mod 5] ^ ROL64(C[(x+1) mod 5], 1) for y from 0 to 4 for x from 0 to 4 lanes[x][y] = lanes[x][y]^D[x] # rho and pi (x, y) = (1, 0) current = lanes[x][y] for t from 0 to 23 (x, y) = (y, (2*x+3*y) mod 5) (current, lanes[x][y]) = (lanes[x][y], ROL64(current, (t+1)*(t+2)/2)) # chi for y from 0 to 4 for x from 0 to 4 T[x] = lanes[x][y] for x from 0 to 4 lanes[x][y] = T[x] ^((not T[(x+1) mod 5]) & T[(x+2) mod 5]) # iota lanes[0][0] ^= RC[round] state = `00`^0 for x from 0 to 4 for y from 0 to 4 state = state || lanes[x][y] return state end¶
where ROL64(x, y) is a rotation of the 'x' 64-bit word toward the bits with higher indexes by 'y' positions. The 8-bytes byte-string x is interpreted as a 64-bit word in little-endian format.¶
TurboSHAKE128(message, separationByte, outputByteLen): offset = 0 state = `00`^200 input = message || separationByte # === Absorb complete blocks === while offset < |input| - 168 state ^= input[offset : offset + 168] || `00`^32 state = KP(state) offset += 168 # === Absorb last block and treatment of padding === LastBlockLength = |input| - offset state ^= input[offset:] || `00`^(200-LastBlockLength) state ^= `00`^167 || `80` || `00`^32 state = KP(state) # === Squeeze === output = `00`^0 while outputByteLen > 168 output = output || state[0:168] outputByteLen -= 168 state = KP(state) output = output || state[0:outputByteLen] return output¶
TurboSHAKE256(message, separationByte, outputByteLen): offset = 0 state = `00`^200 input = message || separationByte # === Absorb complete blocks === while offset < |input| - 136 state ^= input[offset : offset + 136] || `00`^64 state = KP(state) offset += 136 # === Absorb last block and treatment of padding === LastBlockLength = |input| - offset state ^= input[offset:] || `00`^(200-LastBlockLength) state ^= `00`^135 || `80` || `00`^64 state = KP(state) # === Squeeze === output = `00`^0 while outputByteLen > 136 output = output || state[0:136] outputByteLen -= 136 state = KP(state) output = output || state[0:outputByteLen] return output¶
KangarooTwelve(inputMessage, customString, outputByteLen): S = inputMessage || customString S = S || length_encode( |customString| ) if |S| <= 8192 return TurboSHAKE128(S, `07`, outputByteLen) else # === Kangaroo hopping === FinalNode = S[0:8192] || `03` || `00`^7 offset = 8192 numBlock = 0 while offset < |S| blockSize = min( |S| - offset, 8192) CV = TurboSHAKE128(S[offset : offset + blockSize], `0B`, 32) FinalNode = FinalNode || CV numBlock += 1 offset += blockSize FinalNode = FinalNode || length_encode( numBlock ) || `FF FF` return TurboSHAKE128(FinalNode, `06`, outputByteLen) end¶