001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      https://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.codec.digest;
018
019import java.nio.charset.StandardCharsets;
020import java.security.MessageDigest;
021import java.security.NoSuchAlgorithmException;
022import java.security.SecureRandom;
023import java.util.Arrays;
024import java.util.Random;
025import java.util.regex.Matcher;
026import java.util.regex.Pattern;
027
028/**
029 * SHA2-based Unix crypt implementation.
030 * <p>
031 * Based on the C implementation released into the Public Domain by Ulrich Drepper &lt;drepper@redhat.com&gt;
032 * http://www.akkadia.org/drepper/SHA-crypt.txt
033 * </p>
034 * <p>
035 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers &lt;ch@lathspell.de&gt; and likewise put
036 * into the Public Domain.
037 * </p>
038 * <p>
039 * This class is immutable and thread-safe.
040 * </p>
041 *
042 * @since 1.7
043 */
044public class Sha2Crypt {
045
046    /** Default number of rounds if not explicitly specified. */
047    private static final int ROUNDS_DEFAULT = 5000;
048
049    /** Maximum number of rounds. */
050    private static final int ROUNDS_MAX = 999_999_999;
051
052    /** Minimum number of rounds. */
053    private static final int ROUNDS_MIN = 1000;
054
055    /** Prefix for optional rounds specification. */
056    private static final String ROUNDS_PREFIX = "rounds=";
057
058    /** The number of bytes the final hash value will have (SHA-256 variant). */
059    private static final int SHA256_BLOCKSIZE = 32;
060
061    /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
062    static final String SHA256_PREFIX = "$5$";
063
064    /** The number of bytes the final hash value will have (SHA-512 variant). */
065    private static final int SHA512_BLOCKSIZE = 64;
066
067    /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
068    static final String SHA512_PREFIX = "$6$";
069
070    /** The pattern to match valid salt values. */
071    private static final Pattern SALT_PATTERN = Pattern
072            .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
073
074    /**
075     * Generates a libc crypt() compatible "$5$" hash value with random salt.
076     *
077     * <p>
078     * See {@link Crypt#crypt(String, String)} for details.
079     * </p>
080     * <p>
081     * A salt is generated for you using {@link SecureRandom}.
082     * </p>
083     *
084     * @param keyBytes Plaintext to hash. Each array element is set to {@code 0} before returning.
085     * @return The Complete hash value.
086     * @throws IllegalArgumentException Thrown if a {@link java.security.NoSuchAlgorithmException} is caught.
087     */
088    public static String sha256Crypt(final byte[] keyBytes) {
089        return sha256Crypt(keyBytes, null);
090    }
091
092    /**
093     * Generates a libc6 crypt() compatible "$5$" hash value.
094     * <p>
095     * See {@link Crypt#crypt(String, String)} for details.
096     * </p>
097     *
098     * @param keyBytes Plaintext to hash. Each array element is set to {@code 0} before returning.
099     * @param salt     real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated for you using {@link SecureRandom}.
100     *                 If one does not want to use {@link SecureRandom}, you can pass your own {@link Random} in {@link #sha256Crypt(byte[], String, Random)}.
101     * @return The Complete hash value including salt.
102     * @throws IllegalArgumentException Thrown if the salt does not match the allowed pattern.
103     * @throws IllegalArgumentException Thrown if a {@link java.security.NoSuchAlgorithmException} is caught.
104     */
105    public static String sha256Crypt(final byte[] keyBytes, String salt) {
106        if (salt == null) {
107            salt = SHA256_PREFIX + B64.getRandomSalt(8);
108        }
109        return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
110    }
111
112    /**
113     * Generates a libc6 crypt() compatible "$5$" hash value.
114     * <p>
115     * See {@link Crypt#crypt(String, String)} for details.
116     * </p>
117     *
118     * @param keyBytes plaintext to hash. Each array element is set to {@code 0} before returning.
119     * @param salt     real salt value without prefix or "rounds=".
120     * @param random   the instance of {@link Random} to use for generating the salt. Consider using {@link SecureRandom} for more secure salts.
121     * @return The Complete hash value including salt.
122     * @throws IllegalArgumentException Thrown if the salt does not match the allowed pattern.
123     * @throws IllegalArgumentException Thrown if a {@link java.security.NoSuchAlgorithmException} is caught.
124     * @since 1.12
125     */
126    public static String sha256Crypt(final byte[] keyBytes, String salt, final Random random) {
127        if (salt == null) {
128            salt = SHA256_PREFIX + B64.getRandomSalt(8, random);
129        }
130        return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
131    }
132
133    /**
134     * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
135     * <p>
136     * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm description, the short C-style ones
137     * from the original C code and the ones with "Remark" from me.
138     * </p>
139     * <p>
140     * See {@link Crypt#crypt(String, String)} for details.
141     * </p>
142     *
143     * @param keyBytes   plaintext to hash. Each array element is set to {@code 0} before returning.
144     * @param salt       real salt value without prefix or "rounds="; may not be null
145     * @param saltPrefix either $5$ or $6$
146     * @param blocksize  a value that differs between $5$ and $6$
147     * @param algorithm  {@link MessageDigest} algorithm identifier string
148     * @return The Complete hash value including prefix and salt.
149     * @throws IllegalArgumentException Thrown if the given salt is {@code null} or does not match the allowed pattern.
150     * @throws IllegalArgumentException Thrown if a {@link NoSuchAlgorithmException} is caught.
151     * @see MessageDigestAlgorithms
152     */
153    private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
154            final int blocksize, final String algorithm) {
155
156        final int keyLen = keyBytes.length;
157
158        // Extracts effective salt and the number of rounds from the given salt.
159        int rounds = ROUNDS_DEFAULT;
160        boolean roundsCustom = false;
161        if (salt == null) {
162            throw new IllegalArgumentException("Salt must not be null");
163        }
164
165        final Matcher m = SALT_PATTERN.matcher(salt);
166        if (!m.find()) {
167            throw new IllegalArgumentException("Invalid salt value: " + salt);
168        }
169        if (m.group(3) != null) {
170            rounds = Integer.parseInt(m.group(3));
171            rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
172            roundsCustom = true;
173        }
174        final String saltString = m.group(4);
175        final byte[] saltBytes = saltString.getBytes(StandardCharsets.UTF_8);
176        final int saltLen = saltBytes.length;
177
178        // 1. start digest A
179        // Prepare for the real work.
180        MessageDigest ctx = DigestUtils.getDigest(algorithm);
181
182        // 2. the password string is added to digest A
183        /*
184         * Add the key string.
185         */
186        ctx.update(keyBytes);
187
188        // 3. the salt string is added to digest A. This is just the salt string
189        // itself without the enclosing '$', without the magic salt_prefix $5$ and
190        // $6$ respectively and without the rounds=<N> specification.
191        //
192        // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
193        // necessary since it is a constant string and does not add security
194        // and /possibly/ allows a plain text attack. Since the rounds=<N>
195        // specification should never be added this would also create an
196        // inconsistency.
197        /*
198         * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
199         * (for compatibility with existing implementations).
200         */
201        ctx.update(saltBytes);
202
203        // 4. start digest B
204        /*
205         * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
206         * context.
207         */
208        MessageDigest altCtx = DigestUtils.getDigest(algorithm);
209
210        // 5. add the password to digest B
211        /*
212         * Add key.
213         */
214        altCtx.update(keyBytes);
215
216        // 6. add the salt string to digest B
217        /*
218         * Add salt.
219         */
220        altCtx.update(saltBytes);
221
222        // 7. add the password again to digest B
223        /*
224         * Add key again.
225         */
226        altCtx.update(keyBytes);
227
228        // 8. finish digest B
229        /*
230         * Now get result of this (32 bytes) and add it to the other context.
231         */
232        byte[] altResult = altCtx.digest();
233
234        // 9. For each block of 32 or 64 bytes in the password string (excluding
235        // the terminating NUL in the C representation), add digest B to digest A
236        /*
237         * Add for any character in the key one byte of the alternate sum.
238         */
239        /*
240         * (Remark: the C code comment seems wrong for key length > 32!)
241         */
242        int cnt = keyBytes.length;
243        while (cnt > blocksize) {
244            ctx.update(altResult, 0, blocksize);
245            cnt -= blocksize;
246        }
247
248        // 10. For the remaining N bytes of the password string add the first
249        // N bytes of digest B to digest A
250        ctx.update(altResult, 0, cnt);
251
252        // 11. For each bit of the binary representation of the length of the
253        // password string up to and including the highest 1-digit, starting
254        // from to the lowest bit position (numeric value 1):
255        //
256        // a) for a 1-digit add digest B to digest A
257        //
258        // b) for a 0-digit add the password string
259        //
260        // NB: this step differs significantly from the MD5 algorithm. It
261        // adds more randomness.
262        /*
263         * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
264         * the key.
265         */
266        cnt = keyBytes.length;
267        while (cnt > 0) {
268            if ((cnt & 1) != 0) {
269                ctx.update(altResult, 0, blocksize);
270            } else {
271                ctx.update(keyBytes);
272            }
273            cnt >>= 1;
274        }
275
276        // 12. finish digest A
277        /*
278         * Create intermediate result.
279         */
280        altResult = ctx.digest();
281
282        // 13. start digest DP
283        /*
284         * Start computation of P byte sequence.
285         */
286        altCtx = DigestUtils.getDigest(algorithm);
287
288        // 14. for every byte in the password (excluding the terminating NUL byte
289        // in the C representation of the string)
290        //
291        // add the password to digest DP
292        /*
293         * For every character in the password add the entire password.
294         */
295        for (int i = 1; i <= keyLen; i++) {
296            altCtx.update(keyBytes);
297        }
298
299        // 15. finish digest DP
300        /*
301         * Finish the digest.
302         */
303        byte[] tempResult = altCtx.digest();
304
305        // 16. produce byte sequence P of the same length as the password where
306        //
307        // a) for each block of 32 or 64 bytes of length of the password string
308        // the entire digest DP is used
309        //
310        // b) for the remaining N (up to 31 or 63) bytes use the first N
311        // bytes of digest DP
312        /*
313         * Create byte sequence P.
314         */
315        final byte[] bytes = new byte[keyLen];
316        int cp = 0;
317        while (cp < keyLen - blocksize) {
318            System.arraycopy(tempResult, 0, bytes, cp, blocksize);
319            cp += blocksize;
320        }
321        System.arraycopy(tempResult, 0, bytes, cp, keyLen - cp);
322
323        // 17. start digest DS
324        /*
325         * Start computation of S byte sequence.
326         */
327        altCtx = DigestUtils.getDigest(algorithm);
328
329        // 18. repeat the following 16+A[0] times, where A[0] represents the first
330        // byte in digest A interpreted as an 8-bit unsigned value
331        //
332        // add the salt to digest DS
333        /*
334         * For every character in the password add the entire password.
335         */
336        for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
337            altCtx.update(saltBytes);
338        }
339
340        // 19. finish digest DS
341        /*
342         * Finish the digest.
343         */
344        tempResult = altCtx.digest();
345
346        // 20. produce byte sequence S of the same length as the salt string where
347        //
348        // a) for each block of 32 or 64 bytes of length of the salt string
349        // the entire digest DS is used
350        //
351        // b) for the remaining N (up to 31 or 63) bytes use the first N
352        // bytes of digest DS
353        /*
354         * Create byte sequence S.
355         */
356        // Remark: The salt is limited to 16 chars, how does this make sense?
357        final byte[] sBytes = new byte[saltLen];
358        cp = 0;
359        while (cp < saltLen - blocksize) {
360            System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
361            cp += blocksize;
362        }
363        System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
364
365        // 21. repeat a loop according to the number specified in the rounds=<N>
366        // specification in the salt (or the default value if none is
367        // present). Each round is numbered, starting with 0 and up to N-1.
368        //
369        // The loop uses a digest as input. In the first round it is the
370        // digest produced in step 12. In the latter steps it is the digest
371        // produced in step 21.h. The following text uses the notation
372        // "digest A/C" to describe this behavior.
373        /*
374         * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
375         */
376        for (int i = 0; i <= rounds - 1; i++) {
377            // a) start digest C
378            /*
379             * New context.
380             */
381            ctx = DigestUtils.getDigest(algorithm);
382
383            // b) for odd round numbers add the byte sequence P to digest C
384            // c) for even round numbers add digest A/C
385            /*
386             * Add key or last result.
387             */
388            if ((i & 1) != 0) {
389                ctx.update(bytes, 0, keyLen);
390            } else {
391                ctx.update(altResult, 0, blocksize);
392            }
393
394            // d) for all round numbers not divisible by 3 add the byte sequence S
395            /*
396             * Add salt for numbers not divisible by 3.
397             */
398            if (i % 3 != 0) {
399                ctx.update(sBytes, 0, saltLen);
400            }
401
402            // e) for all round numbers not divisible by 7 add the byte sequence P
403            /*
404             * Add key for numbers not divisible by 7.
405             */
406            if (i % 7 != 0) {
407                ctx.update(bytes, 0, keyLen);
408            }
409
410            // f) for odd round numbers add digest A/C
411            // g) for even round numbers add the byte sequence P
412            /*
413             * Add key or last result.
414             */
415            if ((i & 1) != 0) {
416                ctx.update(altResult, 0, blocksize);
417            } else {
418                ctx.update(bytes, 0, keyLen);
419            }
420
421            // h) finish digest C.
422            /*
423             * Create intermediate result.
424             */
425            altResult = ctx.digest();
426        }
427
428        // 22. Produce the output string. This is an ASCII string of the maximum
429        // size specified above, consisting of multiple pieces:
430        //
431        // a) the salt salt_prefix, $5$ or $6$ respectively
432        //
433        // b) the rounds=<N> specification, if one was present in the input
434        // salt string. A trailing '$' is added in this case to separate
435        // the rounds specification from the following text.
436        //
437        // c) the salt string truncated to 16 characters
438        //
439        // d) a '$' character
440        /*
441         * Now we can construct the result string. It consists of three parts.
442         */
443        final StringBuilder buffer = new StringBuilder(saltPrefix);
444        if (roundsCustom) {
445            buffer.append(ROUNDS_PREFIX);
446            buffer.append(rounds);
447            buffer.append("$");
448        }
449        buffer.append(saltString);
450        buffer.append("$");
451
452        // e) the base-64 encoded final C digest. The encoding used is as
453        // follows:
454        // [...]
455        //
456        // Each group of three bytes from the digest produces four
457        // characters as output:
458        //
459        // 1. character: the six low bits of the first byte
460        // 2. character: the two high bits of the first byte and the
461        // four low bytes from the second byte
462        // 3. character: the four high bytes from the second byte and
463        // the two low bits from the third byte
464        // 4. character: the six high bits from the third byte
465        //
466        // The groups of three bytes are as follows (in this sequence).
467        // These are the indices into the byte array containing the
468        // digest, starting with index 0. For the last group there are
469        // not enough bytes left in the digest and the value zero is used
470        // in its place. This group also produces only three or two
471        // characters as output for SHA-512 and SHA-512 respectively.
472
473        // This was just a safeguard in the C implementation:
474        // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
475
476        if (blocksize == 32) {
477            B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
478            B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
479            B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
480            B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
481            B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
482            B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
483            B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
484            B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
485            B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
486            B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
487            B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
488        } else {
489            B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
490            B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
491            B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
492            B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
493            B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
494            B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
495            B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
496            B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
497            B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
498            B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
499            B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
500            B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
501            B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
502            B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
503            B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
504            B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
505            B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
506            B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
507            B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
508            B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
509            B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
510            B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
511        }
512
513        /*
514         * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
515         * cannot get any information.
516         */
517        // Is there a better way to do this with the JVM?
518        Arrays.fill(tempResult, (byte) 0);
519        Arrays.fill(bytes, (byte) 0);
520        Arrays.fill(sBytes, (byte) 0);
521        ctx.reset();
522        altCtx.reset();
523        Arrays.fill(keyBytes, (byte) 0);
524        Arrays.fill(saltBytes, (byte) 0);
525
526        return buffer.toString();
527    }
528
529    /**
530     * Generates a libc crypt() compatible "$6$" hash value with random salt.
531     *
532     * <p>
533     * See {@link Crypt#crypt(String, String)} for details.
534     * </p>
535     * <p>
536     * A salt is generated for you using {@link SecureRandom}.
537     * </p>
538     *
539     * @param keyBytes Plaintext to hash. Each array element is set to {@code 0} before returning.
540     * @return Complete hash value.
541     * @throws IllegalArgumentException Thrown if a {@link java.security.NoSuchAlgorithmException} is caught.
542     */
543    public static String sha512Crypt(final byte[] keyBytes) {
544        return sha512Crypt(keyBytes, null);
545    }
546
547    /**
548     * Generates a libc6 crypt() compatible "$6$" hash value.
549     *
550     * <p>
551     * See {@link Crypt#crypt(String, String)} for details.
552     * </p>
553     *
554     * @param keyBytes Plaintext to hash. Each array element is set to {@code 0} before returning.
555     * @param salt     Real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated for you using {@link SecureRandom};
556     *                 if you want to use a {@link Random} object other than {@link SecureRandom} then we suggest you provide it using
557     *                 {@link #sha512Crypt(byte[], String, Random)}.
558     * @return Complete hash value including salt.
559     * @throws IllegalArgumentException Thrown if the salt does not match the allowed pattern.
560     * @throws IllegalArgumentException Thrown if a {@link java.security.NoSuchAlgorithmException} is caught.
561     */
562    public static String sha512Crypt(final byte[] keyBytes, String salt) {
563        if (salt == null) {
564            salt = SHA512_PREFIX + B64.getRandomSalt(8);
565        }
566        return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
567    }
568
569    /**
570     * Generates a libc6 crypt() compatible "$6$" hash value.
571     *
572     * <p>
573     * See {@link Crypt#crypt(String, String)} for details.
574     * </p>
575     *
576     * @param keyBytes Plaintext to hash. Each array element is set to {@code 0} before returning.
577     * @param salt     Real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated for you using {@link SecureRandom}.
578     * @param random   The instance of {@link Random} to use for generating the salt. Consider using {@link SecureRandom} for more secure salts.
579     * @return Complete hash value including salt.
580     * @throws IllegalArgumentException if the salt does not match the allowed pattern.
581     * @throws IllegalArgumentException when a {@link java.security.NoSuchAlgorithmException} is caught.
582     * @since 1.12
583     */
584    public static String sha512Crypt(final byte[] keyBytes, String salt, final Random random) {
585        if (salt == null) {
586            salt = SHA512_PREFIX + B64.getRandomSalt(8, random);
587        }
588        return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
589    }
590
591    /**
592     * Consider private.
593     *
594     * @deprecated Will be private in the next major version.
595     */
596    @Deprecated
597    public Sha2Crypt() {
598        // empty
599    }
600}